| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmidgsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
cpmidgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
cpmidgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 4 |
|
cpmidgsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
| 5 |
|
cpmidgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 6 |
|
cpmidgsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 7 |
|
cpmidgsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
| 8 |
|
cpmidgsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
| 9 |
|
cpmidgsum.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
| 10 |
|
cpmidgsum.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
| 11 |
|
cpmidgsum.k |
⊢ 𝐾 = ( 𝐶 ‘ 𝑀 ) |
| 12 |
|
cpmidgsum.h |
⊢ 𝐻 = ( 𝐾 · 1 ) |
| 13 |
|
cpmidgsumm2pm.o |
⊢ 𝑂 = ( 1r ‘ 𝐴 ) |
| 14 |
|
cpmidgsumm2pm.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
| 15 |
|
cpmidgsumm2pm.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 16 |
|
cpmidgsum.w |
⊢ 𝑊 = ( Base ‘ 𝑌 ) |
| 17 |
|
cpmidpmat.p |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 18 |
|
cpmidpmat.z |
⊢ 𝑍 = ( var1 ‘ 𝐴 ) |
| 19 |
|
cpmidpmat.m |
⊢ ∙ = ( ·𝑠 ‘ 𝑄 ) |
| 20 |
|
cpmidpmat.e |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 21 |
|
cpmidpmat.i |
⊢ 𝐼 = ( 𝑁 pMatToMatPoly 𝑅 ) |
| 22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
cpmidgsumm2pm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) ) ) |
| 23 |
22
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ‘ 𝐻 ) = ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) ) ) ) |
| 24 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) |
| 25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24
|
cpmidpmatlem1 |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) |
| 26 |
25
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) |
| 28 |
27
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) = ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) |
| 30 |
29
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) |
| 31 |
30
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) |
| 32 |
31
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) ) ) = ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) ) |
| 33 |
|
3simpa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
| 34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24
|
cpmidpmatlem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ∈ ( 𝐵 ↑m ℕ0 ) ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24
|
cpmidpmatlem3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ) |
| 37 |
36
|
oveq1d |
⊢ ( 𝑘 = 𝑥 → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) |
| 38 |
37
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) = ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) |
| 39 |
38
|
eleq1i |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ∈ ( 𝐵 ↑m ℕ0 ) ↔ ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ∈ ( 𝐵 ↑m ℕ0 ) ) |
| 40 |
38
|
breq1i |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) finSupp ( 0g ‘ 𝐴 ) ↔ ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 41 |
39 40
|
anbi12i |
⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ∈ ( 𝐵 ↑m ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) finSupp ( 0g ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ∈ ( 𝐵 ↑m ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) finSupp ( 0g ‘ 𝐴 ) ) ) |
| 42 |
3 4 16 19 20 18 1 2 17 21 6 5 7 15
|
pm2mp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ∈ ( 𝐵 ↑m ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) ) |
| 43 |
41 42
|
sylan2b |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ∈ ( 𝐵 ↑m ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) ) |
| 44 |
33 34 35 43
|
syl12anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) ) |
| 45 |
38
|
fveq1i |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) = ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) |
| 46 |
45
|
fveq2i |
⊢ ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) = ( 𝑇 ‘ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) |
| 47 |
46
|
oveq2i |
⊢ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) |
| 48 |
47
|
mpteq2i |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) |
| 49 |
48
|
oveq2i |
⊢ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) |
| 50 |
49
|
fveq2i |
⊢ ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) = ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) |
| 51 |
45
|
oveq1i |
⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) = ( ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) |
| 52 |
51
|
mpteq2i |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) |
| 53 |
52
|
oveq2i |
⊢ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) |
| 54 |
44 50 53
|
3eqtr4g |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) ) |
| 55 |
32 54
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) ) |
| 56 |
25
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) |
| 57 |
56
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) = ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) |
| 58 |
57
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) |
| 59 |
58
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) ‘ 𝑛 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) ) |
| 60 |
23 55 59
|
3eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ‘ 𝐻 ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ∙ ( 𝑛 𝐸 𝑍 ) ) ) ) ) |