Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cpmidgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cpmidgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cpmidgsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cpmidgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
6 |
|
cpmidgsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
7 |
|
cpmidgsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
8 |
|
cpmidgsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
9 |
|
cpmidgsum.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
10 |
|
cpmidgsum.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
11 |
|
cpmidgsum.k |
⊢ 𝐾 = ( 𝐶 ‘ 𝑀 ) |
12 |
|
cpmidgsum.h |
⊢ 𝐻 = ( 𝐾 · 1 ) |
13 |
|
cpmidgsumm2pm.o |
⊢ 𝑂 = ( 1r ‘ 𝐴 ) |
14 |
|
cpmidgsumm2pm.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
15 |
|
cpmidgsumm2pm.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
16 |
|
cpmidpmat.g |
⊢ 𝐺 = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑘 = 𝐿 → ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝐾 ) ‘ 𝐿 ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑘 = 𝐿 → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝐿 ) ∗ 𝑂 ) ) |
19 |
|
ovex |
⊢ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝐿 ) ∗ 𝑂 ) ∈ V |
20 |
18 16 19
|
fvmpt |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐺 ‘ 𝐿 ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝐿 ) ∗ 𝑂 ) ) |