Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cpmidgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cpmidgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cpmidgsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cpmidgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
6 |
|
cpmidgsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
7 |
|
cpmidgsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
8 |
|
cpmidgsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
9 |
|
cpmidgsum.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
10 |
|
cpmidgsum.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
11 |
|
cpmidgsum.k |
⊢ 𝐾 = ( 𝐶 ‘ 𝑀 ) |
12 |
|
cpmidgsum.h |
⊢ 𝐻 = ( 𝐾 · 1 ) |
13 |
|
cpmidgsumm2pm.o |
⊢ 𝑂 = ( 1r ‘ 𝐴 ) |
14 |
|
cpmidgsumm2pm.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
15 |
|
cpmidgsumm2pm.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
16 |
|
cpmidpmat.g |
⊢ 𝐺 = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ) |
17 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
18 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
22 |
10 1 2 3 21
|
chpmatply1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐶 ‘ 𝑀 ) ∈ ( Base ‘ 𝑃 ) ) |
23 |
11 22
|
eqeltrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐾 ∈ ( Base ‘ 𝑃 ) ) |
24 |
|
eqid |
⊢ ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐾 ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
26 |
24 21 3 25
|
coe1fvalcl |
⊢ ( ( 𝐾 ∈ ( Base ‘ 𝑃 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
27 |
23 26
|
sylan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
28 |
18
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
29 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
30 |
2 13
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → 𝑂 ∈ 𝐵 ) |
31 |
28 29 30
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑂 ∈ 𝐵 ) |
32 |
31
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑂 ∈ 𝐵 ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑂 ∈ 𝐵 ) |
34 |
25 1 2 14
|
matvscl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑂 ∈ 𝐵 ) ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ∈ 𝐵 ) |
35 |
17 20 27 33 34
|
syl22anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 ) ∗ 𝑂 ) ∈ 𝐵 ) |
36 |
35 16
|
fmptd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐺 : ℕ0 ⟶ 𝐵 ) |
37 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
38 |
|
nn0ex |
⊢ ℕ0 ∈ V |
39 |
37 38
|
pm3.2i |
⊢ ( 𝐵 ∈ V ∧ ℕ0 ∈ V ) |
40 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ℕ0 ∈ V ) → ( 𝐺 ∈ ( 𝐵 ↑m ℕ0 ) ↔ 𝐺 : ℕ0 ⟶ 𝐵 ) ) |
41 |
39 40
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐺 ∈ ( 𝐵 ↑m ℕ0 ) ↔ 𝐺 : ℕ0 ⟶ 𝐵 ) ) |
42 |
36 41
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐺 ∈ ( 𝐵 ↑m ℕ0 ) ) |