| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  𝑆  ⊆  ℂ ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 4 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  0  ∈  ℕ0 ) | 
						
							| 6 |  | elfvdm | ⊢ ( 𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 )  →  𝑁  ∈  dom  ( 𝓑C𝑛 ‘ 𝑆 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  𝑁  ∈  dom  ( 𝓑C𝑛 ‘ 𝑆 ) ) | 
						
							| 8 |  | fncpn | ⊢ ( 𝑆  ⊆  ℂ  →  ( 𝓑C𝑛 ‘ 𝑆 )  Fn  ℕ0 ) | 
						
							| 9 |  | fndm | ⊢ ( ( 𝓑C𝑛 ‘ 𝑆 )  Fn  ℕ0  →  dom  ( 𝓑C𝑛 ‘ 𝑆 )  =  ℕ0 ) | 
						
							| 10 | 2 8 9 | 3syl | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  dom  ( 𝓑C𝑛 ‘ 𝑆 )  =  ℕ0 ) | 
						
							| 11 | 7 10 | eleqtrd | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 12 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 13 | 11 12 | eleqtrdi | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 14 |  | cpnord | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  0  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 0 ) )  →  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 )  ⊆  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ) | 
						
							| 15 | 3 5 13 14 | syl3anc | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 )  ⊆  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) | 
						
							| 17 | 15 16 | sseldd | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ) | 
						
							| 18 |  | elcpn | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  0  ∈  ℕ0 )  →  ( 𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 )  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  ∈  ( dom  𝐹 –cn→ ℂ ) ) ) ) | 
						
							| 19 | 2 5 18 | syl2anc | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  ( 𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 )  ↔  ( 𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  ∈  ( dom  𝐹 –cn→ ℂ ) ) ) ) | 
						
							| 20 | 17 19 | mpbid | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  ( 𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  ∈  ( dom  𝐹 –cn→ ℂ ) ) ) | 
						
							| 21 | 20 | simpld | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 22 |  | dvn0 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  =  𝐹 ) | 
						
							| 23 | 2 21 22 | syl2anc | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  =  𝐹 ) | 
						
							| 24 | 20 | simprd | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  ∈  ( dom  𝐹 –cn→ ℂ ) ) | 
						
							| 25 | 23 24 | eqeltrrd | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) )  →  𝐹  ∈  ( dom  𝐹 –cn→ ℂ ) ) |