Step |
Hyp |
Ref |
Expression |
1 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑆 ⊆ ℂ ) |
3 |
|
simpl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
5 |
4
|
a1i |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 0 ∈ ℕ0 ) |
6 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ 𝑆 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ 𝑆 ) ) |
8 |
|
fncpn |
⊢ ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) Fn ℕ0 ) |
9 |
|
fndm |
⊢ ( ( 𝓑C𝑛 ‘ 𝑆 ) Fn ℕ0 → dom ( 𝓑C𝑛 ‘ 𝑆 ) = ℕ0 ) |
10 |
2 8 9
|
3syl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → dom ( 𝓑C𝑛 ‘ 𝑆 ) = ℕ0 ) |
11 |
7 10
|
eleqtrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
12 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
13 |
11 12
|
eleqtrdi |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
14 |
|
cpnord |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 0 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ) |
15 |
3 5 13 14
|
syl3anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ) |
16 |
|
simpr |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) |
17 |
15 16
|
sseldd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ) |
18 |
|
elcpn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) |
19 |
2 5 18
|
syl2anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) |
20 |
17 19
|
mpbid |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
21 |
20
|
simpld |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
22 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
23 |
2 21 22
|
syl2anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
24 |
20
|
simprd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) |
25 |
23 24
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) |