Step |
Hyp |
Ref |
Expression |
1 |
|
cnex |
⊢ ℂ ∈ V |
2 |
1
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ ) |
3 |
|
oveq2 |
⊢ ( 𝑠 = 𝑆 → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 D𝑛 𝑓 ) = ( 𝑆 D𝑛 𝑓 ) ) |
5 |
4
|
fveq1d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) ↔ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) |
7 |
3 6
|
rabeqbidv |
⊢ ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } = { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
8 |
7
|
mpteq2dv |
⊢ ( 𝑠 = 𝑆 → ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
9 |
|
df-cpn |
⊢ 𝓑C𝑛 = ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
10 |
|
nn0ex |
⊢ ℕ0 ∈ V |
11 |
10
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ∈ V |
12 |
8 9 11
|
fvmpt |
⊢ ( 𝑆 ∈ 𝒫 ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
13 |
2 12
|
sylbir |
⊢ ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |