Step |
Hyp |
Ref |
Expression |
1 |
|
rexpen |
⊢ ( ℝ × ℝ ) ≈ ℝ |
2 |
|
eleq1w |
⊢ ( 𝑣 = 𝑥 → ( 𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ ) ) |
3 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ ) ) |
4 |
2 3
|
bi2anan9 |
⊢ ( ( 𝑣 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( i · 𝑤 ) = ( i · 𝑦 ) ) |
6 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑥 ∧ ( i · 𝑤 ) = ( i · 𝑦 ) ) → ( 𝑣 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
7 |
5 6
|
sylan2 |
⊢ ( ( 𝑣 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( 𝑣 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
8 |
7
|
eqeq2d |
⊢ ( ( 𝑣 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ↔ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) ) |
9 |
4 8
|
anbi12d |
⊢ ( ( 𝑣 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) ) ) |
10 |
9
|
cbvoprab12v |
⊢ { 〈 〈 𝑣 , 𝑤 〉 , 𝑧 〉 ∣ ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) } |
11 |
|
df-mpo |
⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) } |
12 |
10 11
|
eqtr4i |
⊢ { 〈 〈 𝑣 , 𝑤 〉 , 𝑧 〉 ∣ ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) } = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) |
13 |
12
|
cnref1o |
⊢ { 〈 〈 𝑣 , 𝑤 〉 , 𝑧 〉 ∣ ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) } : ( ℝ × ℝ ) –1-1-onto→ ℂ |
14 |
|
reex |
⊢ ℝ ∈ V |
15 |
14 14
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
16 |
15
|
f1oen |
⊢ ( { 〈 〈 𝑣 , 𝑤 〉 , 𝑧 〉 ∣ ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) } : ( ℝ × ℝ ) –1-1-onto→ ℂ → ( ℝ × ℝ ) ≈ ℂ ) |
17 |
13 16
|
ax-mp |
⊢ ( ℝ × ℝ ) ≈ ℂ |
18 |
1 17
|
entr3i |
⊢ ℝ ≈ ℂ |
19 |
|
rpnnen |
⊢ ℝ ≈ 𝒫 ℕ |
20 |
18 19
|
entr3i |
⊢ ℂ ≈ 𝒫 ℕ |