Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) |
2 |
1
|
sseq1d |
⊢ ( 𝑛 = 𝑀 → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑛 = 𝑀 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ) |
5 |
4
|
sseq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ) |
8 |
7
|
sseq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) |
11 |
10
|
sseq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
13 |
|
ssid |
⊢ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) |
14 |
13
|
2a1i |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
15 |
|
simprl |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ) |
16 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑆 ⊆ ℂ ) |
18 |
17
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑆 ⊆ ℂ ) |
19 |
|
simplll |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
20 |
|
eluznn0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ℕ0 ) |
21 |
20
|
adantll |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ℕ0 ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑚 ∈ ℕ0 ) |
23 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⟶ ℂ ) |
24 |
19 15 22 23
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⟶ ℂ ) |
25 |
|
dvnbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⊆ dom 𝑓 ) |
26 |
19 15 22 25
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⊆ dom 𝑓 ) |
27 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ) |
28 |
18 15 22 27
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ) |
29 |
|
simprr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
30 |
28 29
|
eqeltrrd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
31 |
|
cncff |
⊢ ( ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) : dom 𝑓 ⟶ ℂ ) |
32 |
30 31
|
syl |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) : dom 𝑓 ⟶ ℂ ) |
33 |
32
|
fdmd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) = dom 𝑓 ) |
34 |
|
cnex |
⊢ ℂ ∈ V |
35 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝑓 : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ) ) |
36 |
34 19 35
|
sylancr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝑓 : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ) ) |
37 |
15 36
|
mpbid |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑓 : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ) |
38 |
37
|
simprd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom 𝑓 ⊆ 𝑆 ) |
39 |
26 38
|
sstrd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⊆ 𝑆 ) |
40 |
18 24 39
|
dvbss |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ⊆ dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) |
41 |
33 40
|
eqsstrrd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom 𝑓 ⊆ dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) |
42 |
26 41
|
eqssd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) = dom 𝑓 ) |
43 |
42
|
feq2d |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⟶ ℂ ↔ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom 𝑓 ⟶ ℂ ) ) |
44 |
24 43
|
mpbid |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom 𝑓 ⟶ ℂ ) |
45 |
|
dvcn |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ∧ dom ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) = dom 𝑓 ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
46 |
18 44 38 33 45
|
syl31anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
47 |
15 46
|
jca |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) |
48 |
47
|
ex |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
49 |
|
peano2nn0 |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
50 |
21 49
|
syl |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
51 |
|
elcpn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑚 + 1 ) ∈ ℕ0 ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
52 |
17 50 51
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
53 |
|
elcpn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
54 |
17 21 53
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
55 |
48 52 54
|
3imtr4d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) → 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ) ) |
56 |
55
|
ssrdv |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ) |
57 |
|
sstr2 |
⊢ ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
58 |
56 57
|
syl |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
59 |
58
|
expcom |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
60 |
59
|
a2d |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
61 |
3 6 9 12 14 60
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
62 |
61
|
com12 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
63 |
62
|
3impia |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) |