Metamath Proof Explorer


Theorem cpnres

Description: The restriction of a C^n function is C^n . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpnres ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹𝑆 ) ∈ ( ( 𝓑C𝑛𝑆 ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) )
2 ssid ℂ ⊆ ℂ
3 elfvdm ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ ℂ ) )
4 3 adantl ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ ℂ ) )
5 fncpn ( ℂ ⊆ ℂ → ( 𝓑C𝑛 ‘ ℂ ) Fn ℕ0 )
6 2 5 ax-mp ( 𝓑C𝑛 ‘ ℂ ) Fn ℕ0
7 fndm ( ( 𝓑C𝑛 ‘ ℂ ) Fn ℕ0 → dom ( 𝓑C𝑛 ‘ ℂ ) = ℕ0 )
8 6 7 mp1i ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → dom ( 𝓑C𝑛 ‘ ℂ ) = ℕ0 )
9 4 8 eleqtrd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝑁 ∈ ℕ0 )
10 elcpn ( ( ℂ ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹cn→ ℂ ) ) ) )
11 2 9 10 sylancr ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹cn→ ℂ ) ) ) )
12 1 11 mpbid ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹cn→ ℂ ) ) )
13 12 simpld ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) )
14 pmresg ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝐹𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) )
15 13 14 syldan ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) )
16 simpl ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } )
17 12 simprd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹cn→ ℂ ) )
18 cncff ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹cn→ ℂ ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) : dom 𝐹 ⟶ ℂ )
19 17 18 syl ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) : dom 𝐹 ⟶ ℂ )
20 19 fdmd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 )
21 dvnres ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) )
22 16 13 9 20 21 syl31anc ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) )
23 resres ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ↾ dom 𝐹 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) )
24 rescom ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ↾ dom 𝐹 ) = ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) ↾ 𝑆 )
25 23 24 eqtr3i ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) = ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) ↾ 𝑆 )
26 ffn ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) : dom 𝐹 ⟶ ℂ → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) Fn dom 𝐹 )
27 fnresdm ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) Fn dom 𝐹 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) )
28 19 26 27 3syl ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) )
29 28 reseq1d ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) )
30 25 29 eqtrid ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) )
31 inss2 ( 𝑆 ∩ dom 𝐹 ) ⊆ dom 𝐹
32 rescncf ( ( 𝑆 ∩ dom 𝐹 ) ⊆ dom 𝐹 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹cn→ ℂ ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) ∈ ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) ) )
33 31 17 32 mpsyl ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) ∈ ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) )
34 30 33 eqeltrrd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ∈ ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) )
35 dmres dom ( 𝐹𝑆 ) = ( 𝑆 ∩ dom 𝐹 )
36 35 oveq1i ( dom ( 𝐹𝑆 ) –cn→ ℂ ) = ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ )
37 34 36 eleqtrrdi ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ∈ ( dom ( 𝐹𝑆 ) –cn→ ℂ ) )
38 22 37 eqeltrd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) ∈ ( dom ( 𝐹𝑆 ) –cn→ ℂ ) )
39 recnprss ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )
40 elcpn ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐹𝑆 ) ∈ ( ( 𝓑C𝑛𝑆 ) ‘ 𝑁 ) ↔ ( ( 𝐹𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) ∈ ( dom ( 𝐹𝑆 ) –cn→ ℂ ) ) ) )
41 39 9 40 syl2an2r ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( 𝐹𝑆 ) ∈ ( ( 𝓑C𝑛𝑆 ) ‘ 𝑁 ) ↔ ( ( 𝐹𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) ∈ ( dom ( 𝐹𝑆 ) –cn→ ℂ ) ) ) )
42 15 38 41 mpbir2and ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹𝑆 ) ∈ ( ( 𝓑C𝑛𝑆 ) ‘ 𝑁 ) )