Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) |
2 |
|
ssid |
⊢ ℂ ⊆ ℂ |
3 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ ℂ ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ ℂ ) ) |
5 |
|
fncpn |
⊢ ( ℂ ⊆ ℂ → ( 𝓑C𝑛 ‘ ℂ ) Fn ℕ0 ) |
6 |
2 5
|
ax-mp |
⊢ ( 𝓑C𝑛 ‘ ℂ ) Fn ℕ0 |
7 |
|
fndm |
⊢ ( ( 𝓑C𝑛 ‘ ℂ ) Fn ℕ0 → dom ( 𝓑C𝑛 ‘ ℂ ) = ℕ0 ) |
8 |
6 7
|
mp1i |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → dom ( 𝓑C𝑛 ‘ ℂ ) = ℕ0 ) |
9 |
4 8
|
eleqtrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
10 |
|
elcpn |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) |
11 |
2 9 10
|
sylancr |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) |
12 |
1 11
|
mpbid |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
13 |
12
|
simpld |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
14 |
|
pmresg |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
15 |
13 14
|
syldan |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
16 |
|
simpl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
17 |
12
|
simprd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) |
18 |
|
cncff |
⊢ ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) : dom 𝐹 ⟶ ℂ ) |
19 |
17 18
|
syl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) : dom 𝐹 ⟶ ℂ ) |
20 |
19
|
fdmd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) |
21 |
|
dvnres |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
22 |
16 13 9 20 21
|
syl31anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
23 |
|
resres |
⊢ ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ↾ dom 𝐹 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) |
24 |
|
rescom |
⊢ ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ↾ dom 𝐹 ) = ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) ↾ 𝑆 ) |
25 |
23 24
|
eqtr3i |
⊢ ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) = ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) ↾ 𝑆 ) |
26 |
|
ffn |
⊢ ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) : dom 𝐹 ⟶ ℂ → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) Fn dom 𝐹 ) |
27 |
|
fnresdm |
⊢ ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) Fn dom 𝐹 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ) |
28 |
19 26 27
|
3syl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ) |
29 |
28
|
reseq1d |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
30 |
25 29
|
syl5eq |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
31 |
|
inss2 |
⊢ ( 𝑆 ∩ dom 𝐹 ) ⊆ dom 𝐹 |
32 |
|
rescncf |
⊢ ( ( 𝑆 ∩ dom 𝐹 ) ⊆ dom 𝐹 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) ∈ ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) ) ) |
33 |
31 17 32
|
mpsyl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) ∈ ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) ) |
34 |
30 33
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ∈ ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) ) |
35 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) |
36 |
35
|
oveq1i |
⊢ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) = ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) |
37 |
34 36
|
eleqtrrdi |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ∈ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) ) |
38 |
22 37
|
eqeltrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) ∈ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) ) |
39 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
40 |
|
elcpn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ↔ ( ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) ∈ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) ) ) ) |
41 |
39 9 40
|
syl2an2r |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ↔ ( ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) ∈ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) ) ) ) |
42 |
15 38 41
|
mpbir2and |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) |