Step |
Hyp |
Ref |
Expression |
1 |
|
cramer.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cramer.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cramer.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
4 |
|
cramer.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
5 |
|
cramer.x |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
6 |
|
cramer.q |
⊢ / = ( /r ‘ 𝑅 ) |
7 |
1
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
8 |
2 7
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
9 |
|
fvoveq1 |
⊢ ( 𝑁 = ∅ → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
10 |
8 9
|
syl5eq |
⊢ ( 𝑁 = ∅ → 𝐵 = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → 𝐵 = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
12 |
11
|
eleq2d |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ) ) |
13 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
14 |
13
|
eleq2d |
⊢ ( 𝑅 ∈ CRing → ( 𝑋 ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ↔ 𝑋 ∈ { ∅ } ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( 𝑋 ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ↔ 𝑋 ∈ { ∅ } ) ) |
16 |
12 15
|
bitrd |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ { ∅ } ) ) |
17 |
3
|
a1i |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
18 |
|
oveq2 |
⊢ ( 𝑁 = ∅ → ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) = ( ( Base ‘ 𝑅 ) ↑m ∅ ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) = ( ( Base ‘ 𝑅 ) ↑m ∅ ) ) |
20 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
21 |
|
map0e |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
22 |
20 21
|
mp1i |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
23 |
17 19 22
|
3eqtrd |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → 𝑉 = 1o ) |
24 |
23
|
eleq2d |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( 𝑌 ∈ 𝑉 ↔ 𝑌 ∈ 1o ) ) |
25 |
|
el1o |
⊢ ( 𝑌 ∈ 1o ↔ 𝑌 = ∅ ) |
26 |
24 25
|
bitrdi |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( 𝑌 ∈ 𝑉 ↔ 𝑌 = ∅ ) ) |
27 |
16 26
|
anbi12d |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ↔ ( 𝑋 ∈ { ∅ } ∧ 𝑌 = ∅ ) ) ) |
28 |
|
elsni |
⊢ ( 𝑋 ∈ { ∅ } → 𝑋 = ∅ ) |
29 |
|
mpteq1 |
⊢ ( 𝑁 = ∅ → ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) = ( 𝑖 ∈ ∅ ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) |
30 |
|
mpt0 |
⊢ ( 𝑖 ∈ ∅ ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) = ∅ |
31 |
29 30
|
eqtrdi |
⊢ ( 𝑁 = ∅ → ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) = ∅ ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑁 = ∅ → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ↔ 𝑍 = ∅ ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ↔ 𝑍 = ∅ ) ) |
34 |
|
simplrl |
⊢ ( ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) ∧ 𝑍 = ∅ ) → 𝑋 = ∅ ) |
35 |
|
simpr |
⊢ ( ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) ∧ 𝑍 = ∅ ) → 𝑍 = ∅ ) |
36 |
34 35
|
oveq12d |
⊢ ( ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) ∧ 𝑍 = ∅ ) → ( 𝑋 · 𝑍 ) = ( ∅ · ∅ ) ) |
37 |
5
|
mavmul0 |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( ∅ · ∅ ) = ∅ ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) ∧ 𝑍 = ∅ ) → ( ∅ · ∅ ) = ∅ ) |
39 |
|
simpr |
⊢ ( ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) → 𝑌 = ∅ ) |
40 |
39
|
eqcomd |
⊢ ( ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) → ∅ = 𝑌 ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) ∧ 𝑍 = ∅ ) → ∅ = 𝑌 ) |
42 |
36 38 41
|
3eqtrd |
⊢ ( ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) ∧ 𝑍 = ∅ ) → ( 𝑋 · 𝑍 ) = 𝑌 ) |
43 |
42
|
ex |
⊢ ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) → ( 𝑍 = ∅ → ( 𝑋 · 𝑍 ) = 𝑌 ) ) |
44 |
33 43
|
sylbid |
⊢ ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) |
45 |
44
|
a1d |
⊢ ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) ) |
46 |
45
|
ex |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( ( 𝑋 = ∅ ∧ 𝑌 = ∅ ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) ) ) |
47 |
28 46
|
sylani |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( ( 𝑋 ∈ { ∅ } ∧ 𝑌 = ∅ ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) ) ) |
48 |
27 47
|
sylbid |
⊢ ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) ) ) |
49 |
48
|
3imp |
⊢ ( ( ( 𝑁 = ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) |