Step |
Hyp |
Ref |
Expression |
1 |
|
cramerimp.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cramerimp.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cramerimp.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
4 |
|
cramerimp.e |
⊢ 𝐸 = ( ( ( 1r ‘ 𝐴 ) ( 𝑁 matRepV 𝑅 ) 𝑍 ) ‘ 𝐼 ) |
5 |
|
cramerimp.h |
⊢ 𝐻 = ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝐼 ) |
6 |
|
cramerimp.x |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
7 |
|
cramerimp.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
8 |
|
cramerimp.q |
⊢ / = ( /r ‘ 𝑅 ) |
9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
10 |
9
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
7 1 2 12
|
mdetf |
⊢ ( 𝑅 ∈ CRing → 𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) → 𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → 𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
16 |
1 2
|
matrcl |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
17 |
16
|
simpld |
⊢ ( 𝑋 ∈ 𝐵 → 𝑁 ∈ Fin ) |
18 |
17
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
19 |
10 18
|
anim12i |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) ) |
20 |
19
|
3adant3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) ) |
21 |
|
ne0i |
⊢ ( 𝐼 ∈ 𝑁 → 𝑁 ≠ ∅ ) |
22 |
9 21
|
anim12ci |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) → ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ) |
23 |
22
|
anim1i |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) ) |
24 |
23
|
3adant3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) ) |
25 |
|
simpl |
⊢ ( ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) |
26 |
25
|
3ad2ant3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) |
27 |
1 2 3 6
|
slesolvec |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑋 · 𝑍 ) = 𝑌 → 𝑍 ∈ 𝑉 ) ) |
28 |
24 26 27
|
sylc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → 𝑍 ∈ 𝑉 ) |
29 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) → 𝐼 ∈ 𝑁 ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → 𝐼 ∈ 𝑁 ) |
31 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
32 |
1 2 3 31
|
ma1repvcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) ∧ ( 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁 ) ) → ( ( ( 1r ‘ 𝐴 ) ( 𝑁 matRepV 𝑅 ) 𝑍 ) ‘ 𝐼 ) ∈ 𝐵 ) |
33 |
20 28 30 32
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( ( 1r ‘ 𝐴 ) ( 𝑁 matRepV 𝑅 ) 𝑍 ) ‘ 𝐼 ) ∈ 𝐵 ) |
34 |
4 33
|
eqeltrid |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → 𝐸 ∈ 𝐵 ) |
35 |
15 34
|
ffvelrnd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝐷 ‘ 𝐸 ) ∈ ( Base ‘ 𝑅 ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) |
37 |
36
|
3ad2ant3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) |
38 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
39 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
40 |
12 38 8 39
|
dvrcan3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐷 ‘ 𝐸 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( 𝐷 ‘ 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑋 ) ) / ( 𝐷 ‘ 𝑋 ) ) = ( 𝐷 ‘ 𝐸 ) ) |
41 |
11 35 37 40
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( ( 𝐷 ‘ 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑋 ) ) / ( 𝐷 ‘ 𝑋 ) ) = ( 𝐷 ‘ 𝐸 ) ) |
42 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
43 |
42
|
3ad2ant1 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → 𝑅 ∈ CRing ) |
44 |
12 38
|
unitcl |
⊢ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) → ( 𝐷 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐷 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
46 |
45
|
3ad2ant3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝐷 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
47 |
12 39
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐷 ‘ 𝐸 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐷 ‘ 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑋 ) ) = ( ( 𝐷 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝐸 ) ) ) |
48 |
43 35 46 47
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( 𝐷 ‘ 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑋 ) ) = ( ( 𝐷 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝐸 ) ) ) |
49 |
48
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( ( 𝐷 ‘ 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑋 ) ) / ( 𝐷 ‘ 𝑋 ) ) = ( ( ( 𝐷 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝐸 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) |
50 |
18
|
adantl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑁 ∈ Fin ) |
51 |
42
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑅 ∈ CRing ) |
52 |
29
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → 𝐼 ∈ 𝑁 ) |
53 |
50 51 52
|
3jca |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ) |
54 |
53
|
3adant3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ) |
55 |
1 3 4 7
|
cramerimplem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐷 ‘ 𝐸 ) = ( 𝑍 ‘ 𝐼 ) ) |
56 |
54 28 55
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝐷 ‘ 𝐸 ) = ( 𝑍 ‘ 𝐼 ) ) |
57 |
41 49 56
|
3eqtr3rd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝑍 ‘ 𝐼 ) = ( ( ( 𝐷 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝐸 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) |
58 |
1 2 3 4 5 6 7 39
|
cramerimplem3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( ( 𝐷 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝐸 ) ) = ( 𝐷 ‘ 𝐻 ) ) |
59 |
58
|
3adant3r |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( 𝐷 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝐸 ) ) = ( 𝐷 ‘ 𝐻 ) ) |
60 |
59
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( ( 𝐷 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝐸 ) ) / ( 𝐷 ‘ 𝑋 ) ) = ( ( 𝐷 ‘ 𝐻 ) / ( 𝐷 ‘ 𝑋 ) ) ) |
61 |
57 60
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑋 · 𝑍 ) = 𝑌 ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝑍 ‘ 𝐼 ) = ( ( 𝐷 ‘ 𝐻 ) / ( 𝐷 ‘ 𝑋 ) ) ) |