Step |
Hyp |
Ref |
Expression |
1 |
|
cramerimp.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cramerimp.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cramerimp.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
4 |
|
cramerimp.e |
⊢ 𝐸 = ( ( ( 1r ‘ 𝐴 ) ( 𝑁 matRepV 𝑅 ) 𝑍 ) ‘ 𝐼 ) |
5 |
|
cramerimp.h |
⊢ 𝐻 = ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝐼 ) |
6 |
|
cramerimp.x |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
7 |
|
cramerimp.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
8 |
|
cramerimp.t |
⊢ ⊗ = ( .r ‘ 𝑅 ) |
9 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
10 |
1 2
|
matrcl |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
11 |
10
|
simpld |
⊢ ( 𝑋 ∈ 𝐵 → 𝑁 ∈ Fin ) |
12 |
11
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
13 |
9 12
|
anim12ci |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
14 |
13
|
3adant3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
15 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
16 |
1 15
|
matmulr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
17 |
14 16
|
syl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
18 |
17
|
oveqd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝐸 ) = ( 𝑋 ( .r ‘ 𝐴 ) 𝐸 ) ) |
19 |
18
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝐷 ‘ ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝐸 ) ) = ( 𝐷 ‘ ( 𝑋 ( .r ‘ 𝐴 ) 𝐸 ) ) ) |
20 |
1 2 3 4 5 6 15
|
cramerimplem2 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝐸 ) = 𝐻 ) |
21 |
20
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝐷 ‘ ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝐸 ) ) = ( 𝐷 ‘ 𝐻 ) ) |
22 |
|
simp1l |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → 𝑅 ∈ CRing ) |
23 |
|
simp2l |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → 𝑋 ∈ 𝐵 ) |
24 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
25 |
24
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
26 |
25 12
|
anim12i |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) ) |
27 |
26
|
3adant3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) ) |
28 |
|
ne0i |
⊢ ( 𝐼 ∈ 𝑁 → 𝑁 ≠ ∅ ) |
29 |
24 28
|
anim12ci |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) → ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ) |
30 |
1 2 3 6
|
slesolvec |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑋 · 𝑍 ) = 𝑌 → 𝑍 ∈ 𝑉 ) ) |
31 |
29 30
|
sylan |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑋 · 𝑍 ) = 𝑌 → 𝑍 ∈ 𝑉 ) ) |
32 |
31
|
3impia |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → 𝑍 ∈ 𝑉 ) |
33 |
|
simp1r |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → 𝐼 ∈ 𝑁 ) |
34 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
35 |
1 2 3 34
|
ma1repvcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) ∧ ( 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁 ) ) → ( ( ( 1r ‘ 𝐴 ) ( 𝑁 matRepV 𝑅 ) 𝑍 ) ‘ 𝐼 ) ∈ 𝐵 ) |
36 |
27 32 33 35
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( ( ( 1r ‘ 𝐴 ) ( 𝑁 matRepV 𝑅 ) 𝑍 ) ‘ 𝐼 ) ∈ 𝐵 ) |
37 |
4 36
|
eqeltrid |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → 𝐸 ∈ 𝐵 ) |
38 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
39 |
1 2 7 8 38
|
mdetmul |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝑋 ( .r ‘ 𝐴 ) 𝐸 ) ) = ( ( 𝐷 ‘ 𝑋 ) ⊗ ( 𝐷 ‘ 𝐸 ) ) ) |
40 |
22 23 37 39
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝐷 ‘ ( 𝑋 ( .r ‘ 𝐴 ) 𝐸 ) ) = ( ( 𝐷 ‘ 𝑋 ) ⊗ ( 𝐷 ‘ 𝐸 ) ) ) |
41 |
19 21 40
|
3eqtr3rd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( ( 𝐷 ‘ 𝑋 ) ⊗ ( 𝐷 ‘ 𝐸 ) ) = ( 𝐷 ‘ 𝐻 ) ) |