Step |
Hyp |
Ref |
Expression |
1 |
|
cramer.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cramer.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cramer.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
4 |
|
cramer.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
5 |
|
cramer.x |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
6 |
|
cramer.q |
⊢ / = ( /r ‘ 𝑅 ) |
7 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑧 ) = 𝑌 ) → 𝑅 ∈ CRing ) |
8 |
|
simpll2 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑧 ) = 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) |
9 |
|
simpll3 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑧 ) = 𝑌 ) → ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) |
10 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑧 ) = 𝑌 ) → 𝑧 ∈ 𝑉 ) |
11 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑧 ) = 𝑌 ) → ( 𝑋 · 𝑧 ) = 𝑌 ) |
12 |
1 2 3 4 5 6
|
cramerlem1 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝑋 · 𝑧 ) = 𝑌 ) ) → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) |
13 |
7 8 9 10 11 12
|
syl113anc |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑉 ) ∧ ( 𝑋 · 𝑧 ) = 𝑌 ) → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) |
14 |
13
|
ex |
⊢ ( ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑋 · 𝑧 ) = 𝑌 → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) ) |
15 |
14
|
ralrimiva |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ∀ 𝑧 ∈ 𝑉 ( ( 𝑋 · 𝑧 ) = 𝑌 → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) ) |