Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | ||
| crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| Assertion | crctcshlem1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | |
| 4 | crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctiswlk | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 6 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 7 | 4 6 | eqeltrid | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑁 ∈ ℕ0 ) | 
| 8 | 3 5 7 | 3syl | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |