Metamath Proof Explorer


Theorem crctcshlem2

Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)

Ref Expression
Hypotheses crctcsh.v 𝑉 = ( Vtx ‘ 𝐺 )
crctcsh.i 𝐼 = ( iEdg ‘ 𝐺 )
crctcsh.d ( 𝜑𝐹 ( Circuits ‘ 𝐺 ) 𝑃 )
crctcsh.n 𝑁 = ( ♯ ‘ 𝐹 )
crctcsh.s ( 𝜑𝑆 ∈ ( 0 ..^ 𝑁 ) )
crctcsh.h 𝐻 = ( 𝐹 cyclShift 𝑆 )
Assertion crctcshlem2 ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 )

Proof

Step Hyp Ref Expression
1 crctcsh.v 𝑉 = ( Vtx ‘ 𝐺 )
2 crctcsh.i 𝐼 = ( iEdg ‘ 𝐺 )
3 crctcsh.d ( 𝜑𝐹 ( Circuits ‘ 𝐺 ) 𝑃 )
4 crctcsh.n 𝑁 = ( ♯ ‘ 𝐹 )
5 crctcsh.s ( 𝜑𝑆 ∈ ( 0 ..^ 𝑁 ) )
6 crctcsh.h 𝐻 = ( 𝐹 cyclShift 𝑆 )
7 crctiswlk ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
8 2 wlkf ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ∈ Word dom 𝐼 )
9 3 7 8 3syl ( 𝜑𝐹 ∈ Word dom 𝐼 )
10 elfzoelz ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℤ )
11 5 10 syl ( 𝜑𝑆 ∈ ℤ )
12 cshwlen ( ( 𝐹 ∈ Word dom 𝐼𝑆 ∈ ℤ ) → ( ♯ ‘ ( 𝐹 cyclShift 𝑆 ) ) = ( ♯ ‘ 𝐹 ) )
13 9 11 12 syl2anc ( 𝜑 → ( ♯ ‘ ( 𝐹 cyclShift 𝑆 ) ) = ( ♯ ‘ 𝐹 ) )
14 6 fveq2i ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 cyclShift 𝑆 ) )
15 13 14 4 3eqtr4g ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 )