Step |
Hyp |
Ref |
Expression |
1 |
|
crctcsh.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
crctcsh.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
crctcsh.d |
⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) |
4 |
|
crctcsh.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
5 |
|
crctcsh.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
6 |
|
crctcsh.h |
⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) |
7 |
|
crctiswlk |
⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
8 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
9 |
3 7 8
|
3syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
10 |
|
elfzoelz |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℤ ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
12 |
|
cshwlen |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑆 ∈ ℤ ) → ( ♯ ‘ ( 𝐹 cyclShift 𝑆 ) ) = ( ♯ ‘ 𝐹 ) ) |
13 |
9 11 12
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 cyclShift 𝑆 ) ) = ( ♯ ‘ 𝐹 ) ) |
14 |
6
|
fveq2i |
⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 cyclShift 𝑆 ) ) |
15 |
13 14 4
|
3eqtr4g |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |