Step |
Hyp |
Ref |
Expression |
1 |
|
crctcsh.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
crctcsh.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
crctcsh.d |
⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) |
4 |
|
crctcsh.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
5 |
|
crctcsh.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
6 |
|
crctcsh.h |
⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) |
7 |
|
crctcsh.q |
⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) |
8 |
|
crctistrl |
⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
9 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
10 |
|
wlkv |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
11 |
|
simp1 |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → 𝐺 ∈ V ) |
12 |
9 10 11
|
3syl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐺 ∈ V ) |
13 |
3 8 12
|
3syl |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
14 |
6
|
ovexi |
⊢ 𝐻 ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
16 |
|
ovex |
⊢ ( 0 ... 𝑁 ) ∈ V |
17 |
16
|
mptex |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) ∈ V |
18 |
7 17
|
eqeltri |
⊢ 𝑄 ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → 𝑄 ∈ V ) |
20 |
13 15 19
|
3jca |
⊢ ( 𝜑 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |