Step |
Hyp |
Ref |
Expression |
1 |
|
crctcsh.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
crctcsh.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
crctcsh.d |
⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) |
4 |
|
crctcsh.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
5 |
|
crctcsh.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
6 |
|
crctcsh.h |
⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) |
7 |
|
crctcsh.q |
⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑆 = 0 → ( 𝐹 cyclShift 𝑆 ) = ( 𝐹 cyclShift 0 ) ) |
9 |
|
crctiswlk |
⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
10 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
11 |
3 9 10
|
3syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
12 |
|
cshw0 |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝐹 cyclShift 0 ) = 𝐹 ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝐹 cyclShift 0 ) = 𝐹 ) |
14 |
8 13
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐹 cyclShift 𝑆 ) = 𝐹 ) |
15 |
6 14
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → 𝐻 = 𝐹 ) |
16 |
|
oveq2 |
⊢ ( 𝑆 = 0 → ( 𝑁 − 𝑆 ) = ( 𝑁 − 0 ) ) |
17 |
1 2 3 4
|
crctcshlem1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
18 |
17
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
19 |
18
|
subid1d |
⊢ ( 𝜑 → ( 𝑁 − 0 ) = 𝑁 ) |
20 |
16 19
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑁 − 𝑆 ) = 𝑁 ) |
21 |
20
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ≤ ( 𝑁 − 𝑆 ) ↔ 𝑥 ≤ 𝑁 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ≤ ( 𝑁 − 𝑆 ) ↔ 𝑥 ≤ 𝑁 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑆 = 0 → ( 𝑥 + 𝑆 ) = ( 𝑥 + 0 ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 + 𝑆 ) = ( 𝑥 + 0 ) ) |
25 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
26 |
25
|
zcnd |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℂ ) |
27 |
26
|
addid1d |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( 𝑥 + 0 ) = 𝑥 ) |
28 |
24 27
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 + 𝑆 ) = 𝑥 ) |
29 |
28
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) = ( 𝑃 ‘ 𝑥 ) ) |
30 |
28
|
fvoveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) = ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) |
31 |
22 29 30
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) = if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) |
32 |
31
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) ) |
33 |
|
elfzle2 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ≤ 𝑁 ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑥 ≤ 𝑁 ) |
35 |
34
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) = ( 𝑃 ‘ 𝑥 ) ) |
36 |
35
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ) |
37 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
38 |
3 9 37
|
3syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
39 |
|
ffn |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
40 |
4
|
eqcomi |
⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
41 |
40
|
oveq2i |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 𝑁 ) |
42 |
41
|
fneq2i |
⊢ ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ 𝑃 Fn ( 0 ... 𝑁 ) ) |
43 |
39 42
|
sylib |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 Fn ( 0 ... 𝑁 ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → 𝑃 Fn ( 0 ... 𝑁 ) ) |
45 |
|
dffn5 |
⊢ ( 𝑃 Fn ( 0 ... 𝑁 ) ↔ 𝑃 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ) |
46 |
44 45
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → 𝑃 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ) |
47 |
46
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) = 𝑃 ) |
48 |
38 47
|
mpdan |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) = 𝑃 ) |
49 |
36 48
|
eqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) = 𝑃 ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) = 𝑃 ) |
51 |
32 50
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) = 𝑃 ) |
52 |
7 51
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → 𝑄 = 𝑃 ) |
53 |
15 52
|
jca |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) ) |