Step |
Hyp |
Ref |
Expression |
1 |
|
crctcsh.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
crctcsh.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
crctcsh.d |
⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) |
4 |
|
crctcsh.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
5 |
|
crctcsh.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
6 |
|
crctcsh.h |
⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) |
7 |
|
crctcsh.q |
⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) |
8 |
1 2 3 4 5 6 7
|
crctcshlem4 |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) ) |
9 |
|
crctistrl |
⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
10 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
11 |
3 9 10
|
3syl |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
12 |
|
breq12 |
⊢ ( ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) → ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ↔ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ) |
13 |
11 12
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) ) |
15 |
8 14
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |
16 |
1 2 3 4 5 6 7
|
crctcshwlkn0 |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |
17 |
15 16
|
pm2.61dane |
⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |