| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							crctcsh.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							crctcsh.i | 
							⊢ 𝐼  =  ( iEdg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							crctcsh.d | 
							⊢ ( 𝜑  →  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 )  | 
						
						
							| 4 | 
							
								
							 | 
							crctcsh.n | 
							⊢ 𝑁  =  ( ♯ ‘ 𝐹 )  | 
						
						
							| 5 | 
							
								
							 | 
							crctcsh.s | 
							⊢ ( 𝜑  →  𝑆  ∈  ( 0 ..^ 𝑁 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							crctcsh.h | 
							⊢ 𝐻  =  ( 𝐹  cyclShift  𝑆 )  | 
						
						
							| 7 | 
							
								
							 | 
							crctcsh.q | 
							⊢ 𝑄  =  ( 𝑥  ∈  ( 0 ... 𝑁 )  ↦  if ( 𝑥  ≤  ( 𝑁  −  𝑆 ) ,  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) ) ,  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							crctiswlk | 
							⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 )  | 
						
						
							| 9 | 
							
								2
							 | 
							wlkf | 
							⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝐹  ∈  Word  dom  𝐼 )  | 
						
						
							| 10 | 
							
								
							 | 
							cshwcl | 
							⊢ ( 𝐹  ∈  Word  dom  𝐼  →  ( 𝐹  cyclShift  𝑆 )  ∈  Word  dom  𝐼 )  | 
						
						
							| 11 | 
							
								3 8 9 10
							 | 
							4syl | 
							⊢ ( 𝜑  →  ( 𝐹  cyclShift  𝑆 )  ∈  Word  dom  𝐼 )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  𝐻  ∈  Word  dom  𝐼 )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑆  ≠  0 )  →  𝐻  ∈  Word  dom  𝐼 )  | 
						
						
							| 14 | 
							
								3 8
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 )  | 
						
						
							| 15 | 
							
								1
							 | 
							wlkp | 
							⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  | 
						
						
							| 16 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  | 
						
						
							| 17 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑥  ∈  ( 0 ... 𝑁 )  →  𝑥  ∈  ℕ0 )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  𝑥  ∈  ℕ0 )  | 
						
						
							| 19 | 
							
								
							 | 
							elfzonn0 | 
							⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  𝑆  ∈  ℕ0 )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  𝑆  ∈  ℕ0 )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							nn0addcld | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑥  +  𝑆 )  ∈  ℕ0 )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( 𝑥  +  𝑆 )  ∈  ℕ0 )  | 
						
						
							| 23 | 
							
								
							 | 
							elfz3nn0 | 
							⊢ ( 𝑥  ∈  ( 0 ... 𝑁 )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 24 | 
							
								4 23
							 | 
							eqeltrrid | 
							⊢ ( 𝑥  ∈  ( 0 ... 𝑁 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  | 
						
						
							| 25 | 
							
								24
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  | 
						
						
							| 26 | 
							
								
							 | 
							elfzelz | 
							⊢ ( 𝑥  ∈  ( 0 ... 𝑁 )  →  𝑥  ∈  ℤ )  | 
						
						
							| 27 | 
							
								26
							 | 
							zred | 
							⊢ ( 𝑥  ∈  ( 0 ... 𝑁 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantl | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 29 | 
							
								
							 | 
							elfzoelz | 
							⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  𝑆  ∈  ℤ )  | 
						
						
							| 30 | 
							
								29
							 | 
							zred | 
							⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  𝑆  ∈  ℝ )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  𝑆  ∈  ℝ )  | 
						
						
							| 32 | 
							
								
							 | 
							elfzel2 | 
							⊢ ( 𝑥  ∈  ( 0 ... 𝑁 )  →  𝑁  ∈  ℤ )  | 
						
						
							| 33 | 
							
								32
							 | 
							zred | 
							⊢ ( 𝑥  ∈  ( 0 ... 𝑁 )  →  𝑁  ∈  ℝ )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  𝑁  ∈  ℝ )  | 
						
						
							| 35 | 
							
								
							 | 
							leaddsub | 
							⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑆  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 𝑥  +  𝑆 )  ≤  𝑁  ↔  𝑥  ≤  ( 𝑁  −  𝑆 ) ) )  | 
						
						
							| 36 | 
							
								28 31 34 35
							 | 
							syl3anc | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑥  +  𝑆 )  ≤  𝑁  ↔  𝑥  ≤  ( 𝑁  −  𝑆 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							biimpar | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( 𝑥  +  𝑆 )  ≤  𝑁 )  | 
						
						
							| 38 | 
							
								37 4
							 | 
							breqtrdi | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( 𝑥  +  𝑆 )  ≤  ( ♯ ‘ 𝐹 ) )  | 
						
						
							| 39 | 
							
								22 25 38
							 | 
							3jca | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( 𝑥  +  𝑆 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑥  +  𝑆 )  ≤  ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 40 | 
							
								5 39
							 | 
							sylanl1 | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( 𝑥  +  𝑆 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑥  +  𝑆 )  ≤  ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							elfz2nn0 | 
							⊢ ( ( 𝑥  +  𝑆 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ↔  ( ( 𝑥  +  𝑆 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑥  +  𝑆 )  ≤  ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( 𝑥  +  𝑆 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantll | 
							⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( 𝑥  +  𝑆 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 44 | 
							
								16 43
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) )  ∈  𝑉 )  | 
						
						
							| 45 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  | 
						
						
							| 46 | 
							
								
							 | 
							elfzoel2 | 
							⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  𝑁  ∈  ℤ )  | 
						
						
							| 47 | 
							
								
							 | 
							zaddcl | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑆  ∈  ℤ )  →  ( 𝑥  +  𝑆 )  ∈  ℤ )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantrr | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑥  +  𝑆 )  ∈  ℤ )  | 
						
						
							| 49 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑁  ∈  ℤ )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							zsubcld | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℤ )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							⊢ ( ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℤ )  | 
						
						
							| 52 | 
							
								
							 | 
							zsubcl | 
							⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑆  ∈  ℤ )  →  ( 𝑁  −  𝑆 )  ∈  ℤ )  | 
						
						
							| 53 | 
							
								52
							 | 
							ancoms | 
							⊢ ( ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  −  𝑆 )  ∈  ℤ )  | 
						
						
							| 54 | 
							
								53
							 | 
							zred | 
							⊢ ( ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  −  𝑆 )  ∈  ℝ )  | 
						
						
							| 55 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℝ )  | 
						
						
							| 56 | 
							
								
							 | 
							ltnle | 
							⊢ ( ( ( 𝑁  −  𝑆 )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑁  −  𝑆 )  <  𝑥  ↔  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) ) )  | 
						
						
							| 57 | 
							
								54 55 56
							 | 
							syl2anr | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑁  −  𝑆 )  <  𝑥  ↔  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ )  | 
						
						
							| 59 | 
							
								58
							 | 
							adantl | 
							⊢ ( ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℝ )  | 
						
						
							| 60 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑆  ∈  ℤ  →  𝑆  ∈  ℝ )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantr | 
							⊢ ( ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑆  ∈  ℝ )  | 
						
						
							| 62 | 
							
								55
							 | 
							adantr | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 63 | 
							
								
							 | 
							ltsubadd | 
							⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑆  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑁  −  𝑆 )  <  𝑥  ↔  𝑁  <  ( 𝑥  +  𝑆 ) ) )  | 
						
						
							| 64 | 
							
								59 61 62 63
							 | 
							syl2an23an | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑁  −  𝑆 )  <  𝑥  ↔  𝑁  <  ( 𝑥  +  𝑆 ) ) )  | 
						
						
							| 65 | 
							
								59
							 | 
							adantl | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑁  ∈  ℝ )  | 
						
						
							| 66 | 
							
								48
							 | 
							zred | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑥  +  𝑆 )  ∈  ℝ )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							posdifd | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑁  <  ( 𝑥  +  𝑆 )  ↔  0  <  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							0red | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  0  ∈  ℝ )  | 
						
						
							| 69 | 
							
								50
							 | 
							zred | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℝ )  | 
						
						
							| 70 | 
							
								
							 | 
							ltle | 
							⊢ ( ( 0  ∈  ℝ  ∧  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℝ )  →  ( 0  <  ( ( 𝑥  +  𝑆 )  −  𝑁 )  →  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  | 
						
						
							| 71 | 
							
								68 69 70
							 | 
							syl2anc | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 0  <  ( ( 𝑥  +  𝑆 )  −  𝑁 )  →  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  | 
						
						
							| 72 | 
							
								67 71
							 | 
							sylbid | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑁  <  ( 𝑥  +  𝑆 )  →  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  | 
						
						
							| 73 | 
							
								64 72
							 | 
							sylbid | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑁  −  𝑆 )  <  𝑥  →  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  | 
						
						
							| 74 | 
							
								57 73
							 | 
							sylbird | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ¬  𝑥  ≤  ( 𝑁  −  𝑆 )  →  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							imp | 
							⊢ ( ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) )  | 
						
						
							| 76 | 
							
								51 75
							 | 
							jca | 
							⊢ ( ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							exp31 | 
							⊢ ( 𝑥  ∈  ℤ  →  ( ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ¬  𝑥  ≤  ( 𝑁  −  𝑆 )  →  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) ) ) )  | 
						
						
							| 78 | 
							
								77 26
							 | 
							syl11 | 
							⊢ ( ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑥  ∈  ( 0 ... 𝑁 )  →  ( ¬  𝑥  ≤  ( 𝑁  −  𝑆 )  →  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) ) ) )  | 
						
						
							| 79 | 
							
								29 46 78
							 | 
							syl2anc | 
							⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  ( 𝑥  ∈  ( 0 ... 𝑁 )  →  ( ¬  𝑥  ≤  ( 𝑁  −  𝑆 )  →  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							imp31 | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							elnn0z | 
							⊢ ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℕ0  ↔  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							sylibr | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℕ0 )  | 
						
						
							| 83 | 
							
								24
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  | 
						
						
							| 84 | 
							
								
							 | 
							elfzo0 | 
							⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ↔  ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							elfz2nn0 | 
							⊢ ( 𝑥  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑥  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑥  ≤  𝑁 ) )  | 
						
						
							| 86 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝑆  ∈  ℕ0  →  𝑆  ∈  ℝ )  | 
						
						
							| 87 | 
							
								86
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  𝑆  ∈  ℝ )  | 
						
						
							| 88 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝑥  ∈  ℕ0  →  𝑥  ∈  ℝ )  | 
						
						
							| 89 | 
							
								88
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑥  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑥  ≤  𝑁 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 90 | 
							
								87 89
							 | 
							anim12ci | 
							⊢ ( ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  ∧  ( 𝑥  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑥  ≤  𝑁 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝑆  ∈  ℝ ) )  | 
						
						
							| 91 | 
							
								
							 | 
							nnre | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ )  | 
						
						
							| 92 | 
							
								91 91
							 | 
							jca | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantr | 
							⊢ ( ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  ∧  ( 𝑥  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑥  ≤  𝑁 ) )  →  ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) )  | 
						
						
							| 95 | 
							
								90 94
							 | 
							jca | 
							⊢ ( ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  ∧  ( 𝑥  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑥  ≤  𝑁 ) )  →  ( ( 𝑥  ∈  ℝ  ∧  𝑆  ∈  ℝ )  ∧  ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  ∧  ( 𝑥  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑥  ≤  𝑁 ) )  →  𝑥  ≤  𝑁 )  | 
						
						
							| 97 | 
							
								
							 | 
							ltle | 
							⊢ ( ( 𝑆  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑆  <  𝑁  →  𝑆  ≤  𝑁 ) )  | 
						
						
							| 98 | 
							
								86 91 97
							 | 
							syl2an | 
							⊢ ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  →  ( 𝑆  <  𝑁  →  𝑆  ≤  𝑁 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							3impia | 
							⊢ ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  𝑆  ≤  𝑁 )  | 
						
						
							| 100 | 
							
								99
							 | 
							adantr | 
							⊢ ( ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  ∧  ( 𝑥  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑥  ≤  𝑁 ) )  →  𝑆  ≤  𝑁 )  | 
						
						
							| 101 | 
							
								95 96 100
							 | 
							jca32 | 
							⊢ ( ( ( 𝑆  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  ∧  ( 𝑥  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑥  ≤  𝑁 ) )  →  ( ( ( 𝑥  ∈  ℝ  ∧  𝑆  ∈  ℝ )  ∧  ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) )  ∧  ( 𝑥  ≤  𝑁  ∧  𝑆  ≤  𝑁 ) ) )  | 
						
						
							| 102 | 
							
								84 85 101
							 | 
							syl2anb | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑥  ∈  ℝ  ∧  𝑆  ∈  ℝ )  ∧  ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) )  ∧  ( 𝑥  ≤  𝑁  ∧  𝑆  ≤  𝑁 ) ) )  | 
						
						
							| 103 | 
							
								
							 | 
							le2add | 
							⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑆  ∈  ℝ )  ∧  ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) )  →  ( ( 𝑥  ≤  𝑁  ∧  𝑆  ≤  𝑁 )  →  ( 𝑥  +  𝑆 )  ≤  ( 𝑁  +  𝑁 ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							imp | 
							⊢ ( ( ( ( 𝑥  ∈  ℝ  ∧  𝑆  ∈  ℝ )  ∧  ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) )  ∧  ( 𝑥  ≤  𝑁  ∧  𝑆  ≤  𝑁 ) )  →  ( 𝑥  +  𝑆 )  ≤  ( 𝑁  +  𝑁 ) )  | 
						
						
							| 105 | 
							
								102 104
							 | 
							syl | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑥  +  𝑆 )  ≤  ( 𝑁  +  𝑁 ) )  | 
						
						
							| 106 | 
							
								66 65 65
							 | 
							3jca | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑥  +  𝑆 )  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							ex | 
							⊢ ( 𝑥  ∈  ℤ  →  ( ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑥  +  𝑆 )  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) ) )  | 
						
						
							| 108 | 
							
								107 26
							 | 
							syl11 | 
							⊢ ( ( 𝑆  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑥  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑥  +  𝑆 )  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) ) )  | 
						
						
							| 109 | 
							
								29 46 108
							 | 
							syl2anc | 
							⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  ( 𝑥  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑥  +  𝑆 )  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							imp | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑥  +  𝑆 )  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ ) )  | 
						
						
							| 111 | 
							
								
							 | 
							lesubadd | 
							⊢ ( ( ( 𝑥  +  𝑆 )  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ≤  𝑁  ↔  ( 𝑥  +  𝑆 )  ≤  ( 𝑁  +  𝑁 ) ) )  | 
						
						
							| 112 | 
							
								110 111
							 | 
							syl | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ≤  𝑁  ↔  ( 𝑥  +  𝑆 )  ≤  ( 𝑁  +  𝑁 ) ) )  | 
						
						
							| 113 | 
							
								105 112
							 | 
							mpbird | 
							⊢ ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ≤  𝑁 )  | 
						
						
							| 114 | 
							
								113
							 | 
							adantr | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ≤  𝑁 )  | 
						
						
							| 115 | 
							
								114 4
							 | 
							breqtrdi | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ≤  ( ♯ ‘ 𝐹 ) )  | 
						
						
							| 116 | 
							
								82 83 115
							 | 
							3jca | 
							⊢ ( ( ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ≤  ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 117 | 
							
								5 116
							 | 
							sylanl1 | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ≤  ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 118 | 
							
								
							 | 
							elfz2nn0 | 
							⊢ ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ↔  ( ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ≤  ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 119 | 
							
								117 118
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 120 | 
							
								119
							 | 
							adantll | 
							⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( ( 𝑥  +  𝑆 )  −  𝑁 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 121 | 
							
								45 120
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) ) )  ∧  ¬  𝑥  ≤  ( 𝑁  −  𝑆 ) )  →  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) )  ∈  𝑉 )  | 
						
						
							| 122 | 
							
								44 121
							 | 
							ifclda | 
							⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) ) )  →  if ( 𝑥  ≤  ( 𝑁  −  𝑆 ) ,  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) ) ,  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  ∈  𝑉 )  | 
						
						
							| 123 | 
							
								122
							 | 
							exp32 | 
							⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  ( 𝜑  →  ( 𝑥  ∈  ( 0 ... 𝑁 )  →  if ( 𝑥  ≤  ( 𝑁  −  𝑆 ) ,  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) ) ,  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  ∈  𝑉 ) ) )  | 
						
						
							| 124 | 
							
								15 123
							 | 
							syl | 
							⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝜑  →  ( 𝑥  ∈  ( 0 ... 𝑁 )  →  if ( 𝑥  ≤  ( 𝑁  −  𝑆 ) ,  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) ) ,  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  ∈  𝑉 ) ) )  | 
						
						
							| 125 | 
							
								14 124
							 | 
							mpcom | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 ... 𝑁 )  →  if ( 𝑥  ≤  ( 𝑁  −  𝑆 ) ,  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) ) ,  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  ∈  𝑉 ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑁 ) )  →  if ( 𝑥  ≤  ( 𝑁  −  𝑆 ) ,  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) ) ,  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) )  ∈  𝑉 )  | 
						
						
							| 127 | 
							
								126 7
							 | 
							fmptd | 
							⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑁 ) ⟶ 𝑉 )  | 
						
						
							| 128 | 
							
								1 2 3 4 5 6
							 | 
							crctcshlem2 | 
							⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  𝑁 )  | 
						
						
							| 129 | 
							
								128
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 0 ... ( ♯ ‘ 𝐻 ) )  =  ( 0 ... 𝑁 ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							feq2d | 
							⊢ ( 𝜑  →  ( 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉  ↔  𝑄 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) )  | 
						
						
							| 131 | 
							
								127 130
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 )  | 
						
						
							| 132 | 
							
								131
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑆  ≠  0 )  →  𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 )  | 
						
						
							| 133 | 
							
								1 2
							 | 
							wlkprop | 
							⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 134 | 
							
								3 8 133
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑆  ≠  0 )  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 136 | 
							
								4
							 | 
							eqcomi | 
							⊢ ( ♯ ‘ 𝐹 )  =  𝑁  | 
						
						
							| 137 | 
							
								136
							 | 
							oveq2i | 
							⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) )  =  ( 0 ..^ 𝑁 )  | 
						
						
							| 138 | 
							
								137
							 | 
							raleqi | 
							⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 139 | 
							
								
							 | 
							fzo1fzo0n0 | 
							⊢ ( 𝑆  ∈  ( 1 ..^ 𝑁 )  ↔  ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ∧  𝑆  ≠  0 ) )  | 
						
						
							| 140 | 
							
								139
							 | 
							simplbi2 | 
							⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  ( 𝑆  ≠  0  →  𝑆  ∈  ( 1 ..^ 𝑁 ) ) )  | 
						
						
							| 141 | 
							
								5 140
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑆  ≠  0  →  𝑆  ∈  ( 1 ..^ 𝑁 ) ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑆  ≠  0 )  →  𝑆  ∈  ( 1 ..^ 𝑁 ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  𝑆  ∈  ( 1 ..^ 𝑁 ) )  | 
						
						
							| 144 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  𝐹  ∈  Word  dom  𝐼 )  | 
						
						
							| 145 | 
							
								
							 | 
							wkslem1 | 
							⊢ ( 𝑖  =  𝑘  →  ( if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  ↔  if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  | 
						
						
							| 147 | 
							
								146
							 | 
							biimpi | 
							⊢ ( ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							adantl | 
							⊢ ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  | 
						
						
							| 149 | 
							
								
							 | 
							crctprop | 
							⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃  →  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  | 
						
						
							| 150 | 
							
								136
							 | 
							fveq2i | 
							⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  ( 𝑃 ‘ 𝑁 )  | 
						
						
							| 151 | 
							
								150
							 | 
							eqeq2i | 
							⊢ ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ↔  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ 𝑁 ) )  | 
						
						
							| 152 | 
							
								151
							 | 
							biimpi | 
							⊢ ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ 𝑁 ) )  | 
						
						
							| 153 | 
							
								152
							 | 
							eqcomd | 
							⊢ ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  →  ( 𝑃 ‘ 𝑁 )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 154 | 
							
								153
							 | 
							adantl | 
							⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝑁 )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 155 | 
							
								3 149 154
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 156 | 
							
								155
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  →  ( 𝑃 ‘ 𝑁 )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 157 | 
							
								156
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  ( 𝑃 ‘ 𝑁 )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 158 | 
							
								143 7 6 4 144 148 157
							 | 
							crctcshwlkn0lem7 | 
							⊢ ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  ∀ 𝑗  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) )  | 
						
						
							| 159 | 
							
								128
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝐻 ) )  =  ( 0 ..^ 𝑁 ) )  | 
						
						
							| 160 | 
							
								159
							 | 
							raleqdv | 
							⊢ ( 𝜑  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) )  ↔  ∀ 𝑗  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 161 | 
							
								160
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) )  ↔  ∀ 𝑗  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 162 | 
							
								161
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) )  ↔  ∀ 𝑗  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 163 | 
							
								158 162
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) )  | 
						
						
							| 164 | 
							
								163
							 | 
							ex | 
							⊢ ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 165 | 
							
								138 164
							 | 
							biimtrid | 
							⊢ ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( 𝜑  ∧  𝑆  ≠  0 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 166 | 
							
								165
							 | 
							ex | 
							⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  →  ( ( 𝜑  ∧  𝑆  ≠  0 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 167 | 
							
								166
							 | 
							com23 | 
							⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ( ( 𝜑  ∧  𝑆  ≠  0 )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 168 | 
							
								167
							 | 
							3impia | 
							⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  ( ( 𝜑  ∧  𝑆  ≠  0 )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 169 | 
							
								135 168
							 | 
							mpcom | 
							⊢ ( ( 𝜑  ∧  𝑆  ≠  0 )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) )  | 
						
						
							| 170 | 
							
								13 132 169
							 | 
							3jca | 
							⊢ ( ( 𝜑  ∧  𝑆  ≠  0 )  →  ( 𝐻  ∈  Word  dom  𝐼  ∧  𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 171 | 
							
								1 2 3 4 5 6 7
							 | 
							crctcshlem3 | 
							⊢ ( 𝜑  →  ( 𝐺  ∈  V  ∧  𝐻  ∈  V  ∧  𝑄  ∈  V ) )  | 
						
						
							| 172 | 
							
								171
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑆  ≠  0 )  →  ( 𝐺  ∈  V  ∧  𝐻  ∈  V  ∧  𝑄  ∈  V ) )  | 
						
						
							| 173 | 
							
								1 2
							 | 
							iswlk | 
							⊢ ( ( 𝐺  ∈  V  ∧  𝐻  ∈  V  ∧  𝑄  ∈  V )  →  ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄  ↔  ( 𝐻  ∈  Word  dom  𝐼  ∧  𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 174 | 
							
								172 173
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑆  ≠  0 )  →  ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄  ↔  ( 𝐻  ∈  Word  dom  𝐼  ∧  𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 175 | 
							
								170 174
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  𝑆  ≠  0 )  →  𝐻 ( Walks ‘ 𝐺 ) 𝑄 )  |