Step |
Hyp |
Ref |
Expression |
1 |
|
crctcsh.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
crctcsh.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
crctcsh.d |
⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) |
4 |
|
crctcsh.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
5 |
|
crctcsh.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
6 |
|
crctcsh.h |
⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) |
7 |
|
crctcsh.q |
⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) |
8 |
|
crctiswlk |
⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
9 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
10 |
|
cshwcl |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝐹 cyclShift 𝑆 ) ∈ Word dom 𝐼 ) |
11 |
3 8 9 10
|
4syl |
⊢ ( 𝜑 → ( 𝐹 cyclShift 𝑆 ) ∈ Word dom 𝐼 ) |
12 |
6 11
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ Word dom 𝐼 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐻 ∈ Word dom 𝐼 ) |
14 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
15 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
16 |
|
simpll |
⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
17 |
|
elfznn0 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℕ0 ) |
18 |
17
|
adantl |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑥 ∈ ℕ0 ) |
19 |
|
elfzonn0 |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℕ0 ) |
20 |
19
|
adantr |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ ℕ0 ) |
21 |
18 20
|
nn0addcld |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 + 𝑆 ) ∈ ℕ0 ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ∈ ℕ0 ) |
23 |
|
elfz3nn0 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 ) |
24 |
4 23
|
eqeltrrid |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
25 |
24
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
26 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
27 |
26
|
zred |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℝ ) |
28 |
27
|
adantl |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
29 |
|
elfzoelz |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℤ ) |
30 |
29
|
zred |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℝ ) |
31 |
30
|
adantr |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ ℝ ) |
32 |
|
elfzel2 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℤ ) |
33 |
32
|
zred |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℝ ) |
34 |
33
|
adantl |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℝ ) |
35 |
|
leaddsub |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑥 + 𝑆 ) ≤ 𝑁 ↔ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) ) |
36 |
28 31 34 35
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑥 + 𝑆 ) ≤ 𝑁 ↔ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) ) |
37 |
36
|
biimpar |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ≤ 𝑁 ) |
38 |
37 4
|
breqtrdi |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ≤ ( ♯ ‘ 𝐹 ) ) |
39 |
22 25 38
|
3jca |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 + 𝑆 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
40 |
5 39
|
sylanl1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 + 𝑆 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
41 |
|
elfz2nn0 |
⊢ ( ( 𝑥 + 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ ( ( 𝑥 + 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 + 𝑆 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
42 |
40 41
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
43 |
42
|
adantll |
⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑥 + 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
44 |
16 43
|
ffvelcdmd |
⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) ∈ 𝑉 ) |
45 |
|
simpll |
⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
46 |
|
elfzoel2 |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) |
47 |
|
zaddcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑥 + 𝑆 ) ∈ ℤ ) |
48 |
47
|
adantrr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑥 + 𝑆 ) ∈ ℤ ) |
49 |
|
simprr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
50 |
48 49
|
zsubcld |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ) |
52 |
|
zsubcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
53 |
52
|
ancoms |
⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
54 |
53
|
zred |
⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − 𝑆 ) ∈ ℝ ) |
55 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
56 |
|
ltnle |
⊢ ( ( ( 𝑁 − 𝑆 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑁 − 𝑆 ) < 𝑥 ↔ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) ) |
57 |
54 55 56
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 − 𝑆 ) < 𝑥 ↔ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) ) |
58 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
59 |
58
|
adantl |
⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
60 |
|
zre |
⊢ ( 𝑆 ∈ ℤ → 𝑆 ∈ ℝ ) |
61 |
60
|
adantr |
⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑆 ∈ ℝ ) |
62 |
55
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑥 ∈ ℝ ) |
63 |
|
ltsubadd |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑁 − 𝑆 ) < 𝑥 ↔ 𝑁 < ( 𝑥 + 𝑆 ) ) ) |
64 |
59 61 62 63
|
syl2an23an |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 − 𝑆 ) < 𝑥 ↔ 𝑁 < ( 𝑥 + 𝑆 ) ) ) |
65 |
59
|
adantl |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℝ ) |
66 |
48
|
zred |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑥 + 𝑆 ) ∈ ℝ ) |
67 |
65 66
|
posdifd |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 < ( 𝑥 + 𝑆 ) ↔ 0 < ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
68 |
|
0red |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 0 ∈ ℝ ) |
69 |
50
|
zred |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℝ ) |
70 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℝ ) → ( 0 < ( ( 𝑥 + 𝑆 ) − 𝑁 ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
71 |
68 69 70
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 0 < ( ( 𝑥 + 𝑆 ) − 𝑁 ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
72 |
67 71
|
sylbid |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 < ( 𝑥 + 𝑆 ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
73 |
64 72
|
sylbid |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 − 𝑆 ) < 𝑥 → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
74 |
57 73
|
sylbird |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
75 |
74
|
imp |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) |
76 |
51 75
|
jca |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
77 |
76
|
exp31 |
⊢ ( 𝑥 ∈ ℤ → ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) ) |
78 |
77 26
|
syl11 |
⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) ) |
79 |
29 46 78
|
syl2anc |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) ) |
80 |
79
|
imp31 |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
81 |
|
elnn0z |
⊢ ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ↔ ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) |
82 |
80 81
|
sylibr |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ) |
83 |
24
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
84 |
|
elfzo0 |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) |
85 |
|
elfz2nn0 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) |
86 |
|
nn0re |
⊢ ( 𝑆 ∈ ℕ0 → 𝑆 ∈ ℝ ) |
87 |
86
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑆 ∈ ℝ ) |
88 |
|
nn0re |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℝ ) |
89 |
88
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) → 𝑥 ∈ ℝ ) |
90 |
87 89
|
anim12ci |
⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ) |
91 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
92 |
91 91
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
93 |
92
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
95 |
90 94
|
jca |
⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
96 |
|
simpr3 |
⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → 𝑥 ≤ 𝑁 ) |
97 |
|
ltle |
⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑆 < 𝑁 → 𝑆 ≤ 𝑁 ) ) |
98 |
86 91 97
|
syl2an |
⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝑆 < 𝑁 → 𝑆 ≤ 𝑁 ) ) |
99 |
98
|
3impia |
⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑆 ≤ 𝑁 ) |
100 |
99
|
adantr |
⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → 𝑆 ≤ 𝑁 ) |
101 |
95 96 100
|
jca32 |
⊢ ( ( ( 𝑆 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ≤ 𝑁 ) ) → ( ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝑥 ≤ 𝑁 ∧ 𝑆 ≤ 𝑁 ) ) ) |
102 |
84 85 101
|
syl2anb |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝑥 ≤ 𝑁 ∧ 𝑆 ≤ 𝑁 ) ) ) |
103 |
|
le2add |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) → ( ( 𝑥 ≤ 𝑁 ∧ 𝑆 ≤ 𝑁 ) → ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) ) |
104 |
103
|
imp |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝑥 ≤ 𝑁 ∧ 𝑆 ≤ 𝑁 ) ) → ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) |
105 |
102 104
|
syl |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) |
106 |
66 65 65
|
3jca |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
107 |
106
|
ex |
⊢ ( 𝑥 ∈ ℤ → ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
108 |
107 26
|
syl11 |
⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
109 |
29 46 108
|
syl2anc |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
110 |
109
|
imp |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
111 |
|
lesubadd |
⊢ ( ( ( 𝑥 + 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ 𝑁 ↔ ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) ) |
112 |
110 111
|
syl |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ 𝑁 ↔ ( 𝑥 + 𝑆 ) ≤ ( 𝑁 + 𝑁 ) ) ) |
113 |
105 112
|
mpbird |
⊢ ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ 𝑁 ) |
114 |
113
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ 𝑁 ) |
115 |
114 4
|
breqtrdi |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ ( ♯ ‘ 𝐹 ) ) |
116 |
82 83 115
|
3jca |
⊢ ( ( ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
117 |
5 116
|
sylanl1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
118 |
|
elfz2nn0 |
⊢ ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ ( ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
119 |
117 118
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
120 |
119
|
adantll |
⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( ( 𝑥 + 𝑆 ) − 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
121 |
45 120
|
ffvelcdmd |
⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) ∧ ¬ 𝑥 ≤ ( 𝑁 − 𝑆 ) ) → ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ∈ 𝑉 ) |
122 |
44 121
|
ifclda |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) |
123 |
122
|
exp32 |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) ) ) |
124 |
15 123
|
syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) ) ) |
125 |
14 124
|
mpcom |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) ) |
126 |
125
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ∈ 𝑉 ) |
127 |
126 7
|
fmptd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) |
128 |
1 2 3 4 5 6
|
crctcshlem2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
129 |
128
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐻 ) ) = ( 0 ... 𝑁 ) ) |
130 |
129
|
feq2d |
⊢ ( 𝜑 → ( 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ↔ 𝑄 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) ) |
131 |
127 130
|
mpbird |
⊢ ( 𝜑 → 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ) |
132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ) |
133 |
1 2
|
wlkprop |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
134 |
3 8 133
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
135 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
136 |
4
|
eqcomi |
⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
137 |
136
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 ) |
138 |
137
|
raleqi |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
139 |
|
fzo1fzo0n0 |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑆 ≠ 0 ) ) |
140 |
139
|
simplbi2 |
⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → ( 𝑆 ≠ 0 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) ) |
141 |
5 140
|
syl |
⊢ ( 𝜑 → ( 𝑆 ≠ 0 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) ) |
142 |
141
|
imp |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) |
143 |
142
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) |
144 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → 𝐹 ∈ Word dom 𝐼 ) |
145 |
|
wkslem1 |
⊢ ( 𝑖 = 𝑘 → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
146 |
145
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
147 |
146
|
biimpi |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
148 |
147
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
149 |
|
crctprop |
⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
150 |
136
|
fveq2i |
⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 𝑁 ) |
151 |
150
|
eqeq2i |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) ) |
152 |
151
|
biimpi |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) ) |
153 |
152
|
eqcomd |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
154 |
153
|
adantl |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
155 |
3 149 154
|
3syl |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
156 |
155
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
157 |
156
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
158 |
143 7 6 4 144 148 157
|
crctcshwlkn0lem7 |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
159 |
128
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ 𝑁 ) ) |
160 |
159
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
161 |
160
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
162 |
161
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
163 |
158 162
|
mpbird |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
164 |
163
|
ex |
⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
165 |
138 164
|
biimtrid |
⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( 𝜑 ∧ 𝑆 ≠ 0 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
166 |
165
|
ex |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) ) |
167 |
166
|
com23 |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) ) |
168 |
167
|
3impia |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
169 |
135 168
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
170 |
13 132 169
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝐻 ∈ Word dom 𝐼 ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
171 |
1 2 3 4 5 6 7
|
crctcshlem3 |
⊢ ( 𝜑 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
173 |
1 2
|
iswlk |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) → ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ↔ ( 𝐻 ∈ Word dom 𝐼 ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) ) |
174 |
172 173
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ↔ ( 𝐻 ∈ Word dom 𝐼 ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ 𝑉 ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) ) |
175 |
170 174
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |