Step |
Hyp |
Ref |
Expression |
1 |
|
crctcshwlkn0lem.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 1 ..^ 𝑁 ) ) |
2 |
|
crctcshwlkn0lem.q |
⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) |
3 |
|
crctcshwlkn0lem.h |
⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) |
4 |
|
crctcshwlkn0lem.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
5 |
|
crctcshwlkn0lem.f |
⊢ ( 𝜑 → 𝐹 ∈ Word 𝐴 ) |
6 |
|
crctcshwlkn0lem.p |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
7 |
|
crctcshwlkn0lem.e |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 0 ) ) |
8 |
1 2 3 4 5 6
|
crctcshwlkn0lem4 |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
9 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑁 − 𝑆 ) = ( 𝑁 − 𝑆 ) ) |
10 |
1 2 3 4 5 6 7
|
crctcshwlkn0lem6 |
⊢ ( ( 𝜑 ∧ ( 𝑁 − 𝑆 ) = ( 𝑁 − 𝑆 ) ) → if- ( ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) = ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) = { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) } , { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) , ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) ) ) |
11 |
9 10
|
mpdan |
⊢ ( 𝜑 → if- ( ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) = ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) = { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) } , { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) , ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) ) ) |
12 |
|
ovex |
⊢ ( 𝑁 − 𝑆 ) ∈ V |
13 |
|
wkslem1 |
⊢ ( 𝑗 = ( 𝑁 − 𝑆 ) → ( if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) = ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) = { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) } , { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) , ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) ) ) ) |
14 |
12 13
|
ralsn |
⊢ ( ∀ 𝑗 ∈ { ( 𝑁 − 𝑆 ) } if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ if- ( ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) = ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) = { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) } , { ( 𝑄 ‘ ( 𝑁 − 𝑆 ) ) , ( 𝑄 ‘ ( ( 𝑁 − 𝑆 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁 − 𝑆 ) ) ) ) ) |
15 |
11 14
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑗 ∈ { ( 𝑁 − 𝑆 ) } if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
16 |
|
ralunb |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ( ∀ 𝑗 ∈ ( 0 ..^ ( 𝑁 − 𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ∧ ∀ 𝑗 ∈ { ( 𝑁 − 𝑆 ) } if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
17 |
8 15 16
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
18 |
|
elfzo1 |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) ) |
19 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
20 |
|
nnz |
⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℤ ) |
21 |
|
zsubcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
22 |
19 20 21
|
syl2anr |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
23 |
22
|
3adant3 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 𝑆 ) ∈ ℤ ) |
24 |
|
nnre |
⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℝ ) |
25 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
26 |
|
posdif |
⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑆 < 𝑁 ↔ 0 < ( 𝑁 − 𝑆 ) ) ) |
27 |
|
0re |
⊢ 0 ∈ ℝ |
28 |
|
resubcl |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ ) → ( 𝑁 − 𝑆 ) ∈ ℝ ) |
29 |
28
|
ancoms |
⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑁 − 𝑆 ) ∈ ℝ ) |
30 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑁 − 𝑆 ) ∈ ℝ ) → ( 0 < ( 𝑁 − 𝑆 ) → 0 ≤ ( 𝑁 − 𝑆 ) ) ) |
31 |
27 29 30
|
sylancr |
⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < ( 𝑁 − 𝑆 ) → 0 ≤ ( 𝑁 − 𝑆 ) ) ) |
32 |
26 31
|
sylbid |
⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑆 < 𝑁 → 0 ≤ ( 𝑁 − 𝑆 ) ) ) |
33 |
24 25 32
|
syl2an |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑆 < 𝑁 → 0 ≤ ( 𝑁 − 𝑆 ) ) ) |
34 |
33
|
3impia |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 0 ≤ ( 𝑁 − 𝑆 ) ) |
35 |
|
elnn0z |
⊢ ( ( 𝑁 − 𝑆 ) ∈ ℕ0 ↔ ( ( 𝑁 − 𝑆 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 − 𝑆 ) ) ) |
36 |
23 34 35
|
sylanbrc |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 𝑆 ) ∈ ℕ0 ) |
37 |
|
elnn0uz |
⊢ ( ( 𝑁 − 𝑆 ) ∈ ℕ0 ↔ ( 𝑁 − 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
38 |
36 37
|
sylib |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
39 |
|
fzosplitsn |
⊢ ( ( 𝑁 − 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) = ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) ) |
40 |
38 39
|
syl |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) = ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) ) |
41 |
18 40
|
sylbi |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) = ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) ) |
42 |
1 41
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) = ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) ) |
43 |
42
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( ( 0 ..^ ( 𝑁 − 𝑆 ) ) ∪ { ( 𝑁 − 𝑆 ) } ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
44 |
17 43
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
45 |
1 2 3 4 5 6
|
crctcshwlkn0lem5 |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
46 |
|
ralunb |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) ∪ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ( ∀ 𝑗 ∈ ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ∧ ∀ 𝑗 ∈ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
47 |
44 45 46
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) ∪ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |
48 |
|
nnsub |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑆 < 𝑁 ↔ ( 𝑁 − 𝑆 ) ∈ ℕ ) ) |
49 |
48
|
biimp3a |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( 𝑁 − 𝑆 ) ∈ ℕ ) |
50 |
|
nnnn0 |
⊢ ( ( 𝑁 − 𝑆 ) ∈ ℕ → ( 𝑁 − 𝑆 ) ∈ ℕ0 ) |
51 |
|
peano2nn0 |
⊢ ( ( 𝑁 − 𝑆 ) ∈ ℕ0 → ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ℕ0 ) |
52 |
49 50 51
|
3syl |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ℕ0 ) |
53 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
54 |
53
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → 𝑁 ∈ ℕ0 ) |
55 |
25
|
anim1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ ) → ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ ) ) |
56 |
55
|
ancoms |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ ) ) |
57 |
|
crctcshwlkn0lem1 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ ) → ( ( 𝑁 − 𝑆 ) + 1 ) ≤ 𝑁 ) |
58 |
56 57
|
syl |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 − 𝑆 ) + 1 ) ≤ 𝑁 ) |
59 |
58
|
3adant3 |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁 − 𝑆 ) + 1 ) ≤ 𝑁 ) |
60 |
|
elfz2nn0 |
⊢ ( ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ( 0 ... 𝑁 ) ↔ ( ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 − 𝑆 ) + 1 ) ≤ 𝑁 ) ) |
61 |
52 54 59 60
|
syl3anbrc |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁 ) → ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ( 0 ... 𝑁 ) ) |
62 |
18 61
|
sylbi |
⊢ ( 𝑆 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ( 0 ... 𝑁 ) ) |
63 |
|
fzosplit |
⊢ ( ( ( 𝑁 − 𝑆 ) + 1 ) ∈ ( 0 ... 𝑁 ) → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) ∪ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) ) ) |
64 |
1 62 63
|
3syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) ∪ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) ) ) |
65 |
64
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( ( 0 ..^ ( ( 𝑁 − 𝑆 ) + 1 ) ) ∪ ( ( ( 𝑁 − 𝑆 ) + 1 ) ..^ 𝑁 ) ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) |
66 |
47 65
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) , ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) = { ( 𝑄 ‘ 𝑗 ) } , { ( 𝑄 ‘ 𝑗 ) , ( 𝑄 ‘ ( 𝑗 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |