| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crctcshwlkn0lem.s | ⊢ ( 𝜑  →  𝑆  ∈  ( 1 ..^ 𝑁 ) ) | 
						
							| 2 |  | crctcshwlkn0lem.q | ⊢ 𝑄  =  ( 𝑥  ∈  ( 0 ... 𝑁 )  ↦  if ( 𝑥  ≤  ( 𝑁  −  𝑆 ) ,  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) ) ,  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) ) ) | 
						
							| 3 |  | crctcshwlkn0lem.h | ⊢ 𝐻  =  ( 𝐹  cyclShift  𝑆 ) | 
						
							| 4 |  | crctcshwlkn0lem.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐹 ) | 
						
							| 5 |  | crctcshwlkn0lem.f | ⊢ ( 𝜑  →  𝐹  ∈  Word  𝐴 ) | 
						
							| 6 |  | crctcshwlkn0lem.p | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 7 |  | crctcshwlkn0lem.e | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 8 | 1 2 3 4 5 6 | crctcshwlkn0lem4 | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 0 ..^ ( 𝑁  −  𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑁  −  𝑆 )  =  ( 𝑁  −  𝑆 ) ) | 
						
							| 10 | 1 2 3 4 5 6 7 | crctcshwlkn0lem6 | ⊢ ( ( 𝜑  ∧  ( 𝑁  −  𝑆 )  =  ( 𝑁  −  𝑆 ) )  →  if- ( ( 𝑄 ‘ ( 𝑁  −  𝑆 ) )  =  ( 𝑄 ‘ ( ( 𝑁  −  𝑆 )  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁  −  𝑆 ) ) )  =  { ( 𝑄 ‘ ( 𝑁  −  𝑆 ) ) } ,  { ( 𝑄 ‘ ( 𝑁  −  𝑆 ) ) ,  ( 𝑄 ‘ ( ( 𝑁  −  𝑆 )  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁  −  𝑆 ) ) ) ) ) | 
						
							| 11 | 9 10 | mpdan | ⊢ ( 𝜑  →  if- ( ( 𝑄 ‘ ( 𝑁  −  𝑆 ) )  =  ( 𝑄 ‘ ( ( 𝑁  −  𝑆 )  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁  −  𝑆 ) ) )  =  { ( 𝑄 ‘ ( 𝑁  −  𝑆 ) ) } ,  { ( 𝑄 ‘ ( 𝑁  −  𝑆 ) ) ,  ( 𝑄 ‘ ( ( 𝑁  −  𝑆 )  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁  −  𝑆 ) ) ) ) ) | 
						
							| 12 |  | ovex | ⊢ ( 𝑁  −  𝑆 )  ∈  V | 
						
							| 13 |  | wkslem1 | ⊢ ( 𝑗  =  ( 𝑁  −  𝑆 )  →  ( if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) )  ↔  if- ( ( 𝑄 ‘ ( 𝑁  −  𝑆 ) )  =  ( 𝑄 ‘ ( ( 𝑁  −  𝑆 )  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁  −  𝑆 ) ) )  =  { ( 𝑄 ‘ ( 𝑁  −  𝑆 ) ) } ,  { ( 𝑄 ‘ ( 𝑁  −  𝑆 ) ) ,  ( 𝑄 ‘ ( ( 𝑁  −  𝑆 )  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁  −  𝑆 ) ) ) ) ) ) | 
						
							| 14 | 12 13 | ralsn | ⊢ ( ∀ 𝑗  ∈  { ( 𝑁  −  𝑆 ) } if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) )  ↔  if- ( ( 𝑄 ‘ ( 𝑁  −  𝑆 ) )  =  ( 𝑄 ‘ ( ( 𝑁  −  𝑆 )  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁  −  𝑆 ) ) )  =  { ( 𝑄 ‘ ( 𝑁  −  𝑆 ) ) } ,  { ( 𝑄 ‘ ( 𝑁  −  𝑆 ) ) ,  ( 𝑄 ‘ ( ( 𝑁  −  𝑆 )  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ ( 𝑁  −  𝑆 ) ) ) ) ) | 
						
							| 15 | 11 14 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  { ( 𝑁  −  𝑆 ) } if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) | 
						
							| 16 |  | ralunb | ⊢ ( ∀ 𝑗  ∈  ( ( 0 ..^ ( 𝑁  −  𝑆 ) )  ∪  { ( 𝑁  −  𝑆 ) } ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) )  ↔  ( ∀ 𝑗  ∈  ( 0 ..^ ( 𝑁  −  𝑆 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) )  ∧  ∀ 𝑗  ∈  { ( 𝑁  −  𝑆 ) } if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) | 
						
							| 17 | 8 15 16 | sylanbrc | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( ( 0 ..^ ( 𝑁  −  𝑆 ) )  ∪  { ( 𝑁  −  𝑆 ) } ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) | 
						
							| 18 |  | elfzo1 | ⊢ ( 𝑆  ∈  ( 1 ..^ 𝑁 )  ↔  ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 ) ) | 
						
							| 19 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 20 |  | nnz | ⊢ ( 𝑆  ∈  ℕ  →  𝑆  ∈  ℤ ) | 
						
							| 21 |  | zsubcl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑆  ∈  ℤ )  →  ( 𝑁  −  𝑆 )  ∈  ℤ ) | 
						
							| 22 | 19 20 21 | syl2anr | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  −  𝑆 )  ∈  ℤ ) | 
						
							| 23 | 22 | 3adant3 | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  ( 𝑁  −  𝑆 )  ∈  ℤ ) | 
						
							| 24 |  | nnre | ⊢ ( 𝑆  ∈  ℕ  →  𝑆  ∈  ℝ ) | 
						
							| 25 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 26 |  | posdif | ⊢ ( ( 𝑆  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑆  <  𝑁  ↔  0  <  ( 𝑁  −  𝑆 ) ) ) | 
						
							| 27 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 28 |  | resubcl | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( 𝑁  −  𝑆 )  ∈  ℝ ) | 
						
							| 29 | 28 | ancoms | ⊢ ( ( 𝑆  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑁  −  𝑆 )  ∈  ℝ ) | 
						
							| 30 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑁  −  𝑆 )  ∈  ℝ )  →  ( 0  <  ( 𝑁  −  𝑆 )  →  0  ≤  ( 𝑁  −  𝑆 ) ) ) | 
						
							| 31 | 27 29 30 | sylancr | ⊢ ( ( 𝑆  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 0  <  ( 𝑁  −  𝑆 )  →  0  ≤  ( 𝑁  −  𝑆 ) ) ) | 
						
							| 32 | 26 31 | sylbid | ⊢ ( ( 𝑆  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑆  <  𝑁  →  0  ≤  ( 𝑁  −  𝑆 ) ) ) | 
						
							| 33 | 24 25 32 | syl2an | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑆  <  𝑁  →  0  ≤  ( 𝑁  −  𝑆 ) ) ) | 
						
							| 34 | 33 | 3impia | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  0  ≤  ( 𝑁  −  𝑆 ) ) | 
						
							| 35 |  | elnn0z | ⊢ ( ( 𝑁  −  𝑆 )  ∈  ℕ0  ↔  ( ( 𝑁  −  𝑆 )  ∈  ℤ  ∧  0  ≤  ( 𝑁  −  𝑆 ) ) ) | 
						
							| 36 | 23 34 35 | sylanbrc | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  ( 𝑁  −  𝑆 )  ∈  ℕ0 ) | 
						
							| 37 |  | elnn0uz | ⊢ ( ( 𝑁  −  𝑆 )  ∈  ℕ0  ↔  ( 𝑁  −  𝑆 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 38 | 36 37 | sylib | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  ( 𝑁  −  𝑆 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 39 |  | fzosplitsn | ⊢ ( ( 𝑁  −  𝑆 )  ∈  ( ℤ≥ ‘ 0 )  →  ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) )  =  ( ( 0 ..^ ( 𝑁  −  𝑆 ) )  ∪  { ( 𝑁  −  𝑆 ) } ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) )  =  ( ( 0 ..^ ( 𝑁  −  𝑆 ) )  ∪  { ( 𝑁  −  𝑆 ) } ) ) | 
						
							| 41 | 18 40 | sylbi | ⊢ ( 𝑆  ∈  ( 1 ..^ 𝑁 )  →  ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) )  =  ( ( 0 ..^ ( 𝑁  −  𝑆 ) )  ∪  { ( 𝑁  −  𝑆 ) } ) ) | 
						
							| 42 | 1 41 | syl | ⊢ ( 𝜑  →  ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) )  =  ( ( 0 ..^ ( 𝑁  −  𝑆 ) )  ∪  { ( 𝑁  −  𝑆 ) } ) ) | 
						
							| 43 | 17 42 | raleqtrrdv | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) | 
						
							| 44 | 1 2 3 4 5 6 | crctcshwlkn0lem5 | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( ( ( 𝑁  −  𝑆 )  +  1 ) ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) | 
						
							| 45 |  | ralunb | ⊢ ( ∀ 𝑗  ∈  ( ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) )  ∪  ( ( ( 𝑁  −  𝑆 )  +  1 ) ..^ 𝑁 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) )  ↔  ( ∀ 𝑗  ∈  ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) )  ∧  ∀ 𝑗  ∈  ( ( ( 𝑁  −  𝑆 )  +  1 ) ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) ) | 
						
							| 46 | 43 44 45 | sylanbrc | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) )  ∪  ( ( ( 𝑁  −  𝑆 )  +  1 ) ..^ 𝑁 ) ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) | 
						
							| 47 |  | nnsub | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑆  <  𝑁  ↔  ( 𝑁  −  𝑆 )  ∈  ℕ ) ) | 
						
							| 48 | 47 | biimp3a | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  ( 𝑁  −  𝑆 )  ∈  ℕ ) | 
						
							| 49 |  | nnnn0 | ⊢ ( ( 𝑁  −  𝑆 )  ∈  ℕ  →  ( 𝑁  −  𝑆 )  ∈  ℕ0 ) | 
						
							| 50 |  | peano2nn0 | ⊢ ( ( 𝑁  −  𝑆 )  ∈  ℕ0  →  ( ( 𝑁  −  𝑆 )  +  1 )  ∈  ℕ0 ) | 
						
							| 51 | 48 49 50 | 3syl | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  ( ( 𝑁  −  𝑆 )  +  1 )  ∈  ℕ0 ) | 
						
							| 52 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 53 | 52 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 54 | 25 | anim1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑆  ∈  ℕ )  →  ( 𝑁  ∈  ℝ  ∧  𝑆  ∈  ℕ ) ) | 
						
							| 55 | 54 | ancoms | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ∈  ℝ  ∧  𝑆  ∈  ℕ ) ) | 
						
							| 56 |  | crctcshwlkn0lem1 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑆  ∈  ℕ )  →  ( ( 𝑁  −  𝑆 )  +  1 )  ≤  𝑁 ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑁  −  𝑆 )  +  1 )  ≤  𝑁 ) | 
						
							| 58 | 57 | 3adant3 | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  ( ( 𝑁  −  𝑆 )  +  1 )  ≤  𝑁 ) | 
						
							| 59 |  | elfz2nn0 | ⊢ ( ( ( 𝑁  −  𝑆 )  +  1 )  ∈  ( 0 ... 𝑁 )  ↔  ( ( ( 𝑁  −  𝑆 )  +  1 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  ( ( 𝑁  −  𝑆 )  +  1 )  ≤  𝑁 ) ) | 
						
							| 60 | 51 53 58 59 | syl3anbrc | ⊢ ( ( 𝑆  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑆  <  𝑁 )  →  ( ( 𝑁  −  𝑆 )  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 61 | 18 60 | sylbi | ⊢ ( 𝑆  ∈  ( 1 ..^ 𝑁 )  →  ( ( 𝑁  −  𝑆 )  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 62 |  | fzosplit | ⊢ ( ( ( 𝑁  −  𝑆 )  +  1 )  ∈  ( 0 ... 𝑁 )  →  ( 0 ..^ 𝑁 )  =  ( ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) )  ∪  ( ( ( 𝑁  −  𝑆 )  +  1 ) ..^ 𝑁 ) ) ) | 
						
							| 63 | 1 61 62 | 3syl | ⊢ ( 𝜑  →  ( 0 ..^ 𝑁 )  =  ( ( 0 ..^ ( ( 𝑁  −  𝑆 )  +  1 ) )  ∪  ( ( ( 𝑁  −  𝑆 )  +  1 ) ..^ 𝑁 ) ) ) | 
						
							| 64 | 46 63 | raleqtrrdv | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) )  =  { ( 𝑄 ‘ 𝑗 ) } ,  { ( 𝑄 ‘ 𝑗 ) ,  ( 𝑄 ‘ ( 𝑗  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐻 ‘ 𝑗 ) ) ) ) |