Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
ax-icn |
⊢ i ∈ ℂ |
3 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
4 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) |
5 |
2 3 4
|
sylancr |
⊢ ( 𝐵 ∈ ℝ → ( i · 𝐵 ) ∈ ℂ ) |
6 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
7 |
1 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
8 |
|
imval |
⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) ) |
10 |
2 4
|
mpan |
⊢ ( 𝐵 ∈ ℂ → ( i · 𝐵 ) ∈ ℂ ) |
11 |
|
ine0 |
⊢ i ≠ 0 |
12 |
|
divdir |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) / i ) = ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) ) |
13 |
12
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) / i ) = ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) ) |
14 |
2 11 13
|
mpanr12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( ( 𝐴 + ( i · 𝐵 ) ) / i ) = ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) ) |
15 |
10 14
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + ( i · 𝐵 ) ) / i ) = ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) ) |
16 |
|
divrec2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( 𝐴 / i ) = ( ( 1 / i ) · 𝐴 ) ) |
17 |
2 11 16
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / i ) = ( ( 1 / i ) · 𝐴 ) ) |
18 |
|
irec |
⊢ ( 1 / i ) = - i |
19 |
18
|
oveq1i |
⊢ ( ( 1 / i ) · 𝐴 ) = ( - i · 𝐴 ) |
20 |
19
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 / i ) · 𝐴 ) = ( - i · 𝐴 ) ) |
21 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
22 |
2 21
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
23 |
17 20 22
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / i ) = ( i · - 𝐴 ) ) |
24 |
|
divcan3 |
⊢ ( ( 𝐵 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( i · 𝐵 ) / i ) = 𝐵 ) |
25 |
2 11 24
|
mp3an23 |
⊢ ( 𝐵 ∈ ℂ → ( ( i · 𝐵 ) / i ) = 𝐵 ) |
26 |
23 25
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) = ( ( i · - 𝐴 ) + 𝐵 ) ) |
27 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
28 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) ∈ ℂ ) |
29 |
2 27 28
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) ∈ ℂ ) |
30 |
|
addcom |
⊢ ( ( ( i · - 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · - 𝐴 ) + 𝐵 ) = ( 𝐵 + ( i · - 𝐴 ) ) ) |
31 |
29 30
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · - 𝐴 ) + 𝐵 ) = ( 𝐵 + ( i · - 𝐴 ) ) ) |
32 |
15 26 31
|
3eqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + ( i · - 𝐴 ) ) = ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) |
33 |
1 3 32
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 + ( i · - 𝐴 ) ) = ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) |
34 |
33
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℜ ‘ ( 𝐵 + ( i · - 𝐴 ) ) ) = ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) ) |
35 |
|
id |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ ) |
36 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
37 |
|
crre |
⊢ ( ( 𝐵 ∈ ℝ ∧ - 𝐴 ∈ ℝ ) → ( ℜ ‘ ( 𝐵 + ( i · - 𝐴 ) ) ) = 𝐵 ) |
38 |
35 36 37
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℜ ‘ ( 𝐵 + ( i · - 𝐴 ) ) ) = 𝐵 ) |
39 |
9 34 38
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐵 ) |