Metamath Proof Explorer
		
		
		
		Description:  The imaginary part of a complex number representation.  Definition
       10-3.1 of Gleason p. 132.  (Contributed by Mario Carneiro, 29-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | crred.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | crred.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
				
					|  | Assertion | crimd | ⊢  ( 𝜑  →  ( ℑ ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crred.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | crred.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | crim | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ℑ ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  𝐵 ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  𝐵 ) |