Metamath Proof Explorer
		
		
		
		Description:  The imaginary part of a complex number representation.  Definition
       10-3.1 of Gleason p. 132.  (Contributed by NM, 10-May-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | crre.1 | ⊢ 𝐴  ∈  ℝ | 
					
						|  |  | crre.2 | ⊢ 𝐵  ∈  ℝ | 
				
					|  | Assertion | crimi | ⊢  ( ℑ ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  𝐵 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crre.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | crre.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | crim | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ℑ ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  𝐵 ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( ℑ ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  𝐵 |