Step |
Hyp |
Ref |
Expression |
1 |
|
cringmul32d.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
cringmul32d.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
cringmul32d.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
4 |
|
cringmul32d.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
cringmul32d.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
cringmul32d.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
1 2 3 5 6
|
crngcomd |
⊢ ( 𝜑 → ( 𝑌 · 𝑍 ) = ( 𝑍 · 𝑌 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 · 𝑍 ) ) = ( 𝑋 · ( 𝑍 · 𝑌 ) ) ) |
9 |
3
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
1 2 9 4 5 6
|
ringassd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) ) |
11 |
1 2 9 4 6 5
|
ringassd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) · 𝑌 ) = ( 𝑋 · ( 𝑍 · 𝑌 ) ) ) |
12 |
8 10 11
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) · 𝑌 ) ) |