Metamath Proof Explorer


Theorem cringmul32d

Description: Commutative/associative law that swaps the last two factors in a triple product in a commutative ring. See also mul32 . (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses cringmul32d.b 𝐵 = ( Base ‘ 𝑅 )
cringmul32d.t · = ( .r𝑅 )
cringmul32d.r ( 𝜑𝑅 ∈ CRing )
cringmul32d.x ( 𝜑𝑋𝐵 )
cringmul32d.y ( 𝜑𝑌𝐵 )
cringmul32d.z ( 𝜑𝑍𝐵 )
Assertion cringmul32d ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) · 𝑌 ) )

Proof

Step Hyp Ref Expression
1 cringmul32d.b 𝐵 = ( Base ‘ 𝑅 )
2 cringmul32d.t · = ( .r𝑅 )
3 cringmul32d.r ( 𝜑𝑅 ∈ CRing )
4 cringmul32d.x ( 𝜑𝑋𝐵 )
5 cringmul32d.y ( 𝜑𝑌𝐵 )
6 cringmul32d.z ( 𝜑𝑍𝐵 )
7 1 2 3 5 6 crngcomd ( 𝜑 → ( 𝑌 · 𝑍 ) = ( 𝑍 · 𝑌 ) )
8 7 oveq2d ( 𝜑 → ( 𝑋 · ( 𝑌 · 𝑍 ) ) = ( 𝑋 · ( 𝑍 · 𝑌 ) ) )
9 3 crngringd ( 𝜑𝑅 ∈ Ring )
10 1 2 9 4 5 6 ringassd ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) )
11 1 2 9 4 6 5 ringassd ( 𝜑 → ( ( 𝑋 · 𝑍 ) · 𝑌 ) = ( 𝑋 · ( 𝑍 · 𝑌 ) ) )
12 8 10 11 3eqtr4d ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) · 𝑌 ) )