| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crng12d.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | crng12d.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | crng12d.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 4 |  | crng12d.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | crng12d.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | crng12d.3 | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 7 | 1 2 3 4 5 | crngcomd | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑌 )  =  ( 𝑌  ·  𝑋 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑋  ·  𝑌 )  ·  𝑍 )  =  ( ( 𝑌  ·  𝑋 )  ·  𝑍 ) ) | 
						
							| 9 | 3 | crngringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 10 | 1 2 9 4 5 6 | ringassd | ⊢ ( 𝜑  →  ( ( 𝑋  ·  𝑌 )  ·  𝑍 )  =  ( 𝑋  ·  ( 𝑌  ·  𝑍 ) ) ) | 
						
							| 11 | 1 2 9 5 4 6 | ringassd | ⊢ ( 𝜑  →  ( ( 𝑌  ·  𝑋 )  ·  𝑍 )  =  ( 𝑌  ·  ( 𝑋  ·  𝑍 ) ) ) | 
						
							| 12 | 8 10 11 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑋  ·  ( 𝑌  ·  𝑍 ) )  =  ( 𝑌  ·  ( 𝑋  ·  𝑍 ) ) ) |