| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crng2idl.i |
⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 3 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 4 |
1 3
|
crngridl |
⊢ ( 𝑅 ∈ CRing → 𝐼 = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 5 |
4
|
ineq2d |
⊢ ( 𝑅 ∈ CRing → ( 𝐼 ∩ 𝐼 ) = ( 𝐼 ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 6 |
2 5
|
eqtr3id |
⊢ ( 𝑅 ∈ CRing → 𝐼 = ( 𝐼 ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 7 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
| 8 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 9 |
1 3 7 8
|
2idlval |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 𝐼 ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 10 |
6 9
|
eqtr4di |
⊢ ( 𝑅 ∈ CRing → 𝐼 = ( 2Ideal ‘ 𝑅 ) ) |