Description: The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngbascntr.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| crngbascntr.z | ⊢ 𝑍 = ( Cntr ‘ ( mulGrp ‘ 𝐺 ) ) | ||
| Assertion | crngbascntr | ⊢ ( 𝐺 ∈ CRing → 𝐵 = 𝑍 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | crngbascntr.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | crngbascntr.z | ⊢ 𝑍 = ( Cntr ‘ ( mulGrp ‘ 𝐺 ) ) | |
| 3 | eqid | ⊢ ( mulGrp ‘ 𝐺 ) = ( mulGrp ‘ 𝐺 ) | |
| 4 | 3 | crngmgp | ⊢ ( 𝐺 ∈ CRing → ( mulGrp ‘ 𝐺 ) ∈ CMnd ) | 
| 5 | 3 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐺 ) ) | 
| 6 | 5 2 | cmnbascntr | ⊢ ( ( mulGrp ‘ 𝐺 ) ∈ CMnd → 𝐵 = 𝑍 ) | 
| 7 | 4 6 | syl | ⊢ ( 𝐺 ∈ CRing → 𝐵 = 𝑍 ) |