Metamath Proof Explorer


Theorem crngbascntr

Description: The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses crngbascntr.b 𝐵 = ( Base ‘ 𝐺 )
crngbascntr.z 𝑍 = ( Cntr ‘ ( mulGrp ‘ 𝐺 ) )
Assertion crngbascntr ( 𝐺 ∈ CRing → 𝐵 = 𝑍 )

Proof

Step Hyp Ref Expression
1 crngbascntr.b 𝐵 = ( Base ‘ 𝐺 )
2 crngbascntr.z 𝑍 = ( Cntr ‘ ( mulGrp ‘ 𝐺 ) )
3 eqid ( mulGrp ‘ 𝐺 ) = ( mulGrp ‘ 𝐺 )
4 3 crngmgp ( 𝐺 ∈ CRing → ( mulGrp ‘ 𝐺 ) ∈ CMnd )
5 3 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐺 ) )
6 5 2 cmnbascntr ( ( mulGrp ‘ 𝐺 ) ∈ CMnd → 𝐵 = 𝑍 )
7 4 6 syl ( 𝐺 ∈ CRing → 𝐵 = 𝑍 )