Step |
Hyp |
Ref |
Expression |
1 |
|
crngbinom.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
2 |
|
crngbinom.m |
⊢ × = ( .r ‘ 𝑅 ) |
3 |
|
crngbinom.t |
⊢ · = ( .g ‘ 𝑅 ) |
4 |
|
crngbinom.a |
⊢ + = ( +g ‘ 𝑅 ) |
5 |
|
crngbinom.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
6 |
|
crngbinom.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
7 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
8 |
|
ringsrg |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ SRing ) |
9 |
7 8
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ SRing ) |
10 |
9
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) → 𝑅 ∈ SRing ) |
11 |
5
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
13 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
14 |
10 12 13
|
3jca |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) → ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ) |
15 |
1 2 3 4 5 6
|
csrgbinom |
⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |
16 |
14 15
|
sylan |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |