Metamath Proof Explorer


Theorem crngcom

Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses ringcl.b 𝐵 = ( Base ‘ 𝑅 )
ringcl.t · = ( .r𝑅 )
Assertion crngcom ( ( 𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ringcl.b 𝐵 = ( Base ‘ 𝑅 )
2 ringcl.t · = ( .r𝑅 )
3 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
4 3 crngmgp ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
5 3 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
6 3 2 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
7 5 6 cmncom ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) )
8 4 7 syl3an1 ( ( 𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) )