Metamath Proof Explorer
Description: Multiplication is commutative in a commutative ring. (Contributed by SN, 8-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
crngcomd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
crngcomd.t |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
crngcomd.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
|
|
crngcomd.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
crngcomd.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
Assertion |
crngcomd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
crngcomd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
crngcomd.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
crngcomd.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
4 |
|
crngcomd.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
crngcomd.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
1 2
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |