Metamath Proof Explorer


Theorem crngcomd

Description: Multiplication is commutative in a commutative ring. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses crngcomd.b 𝐵 = ( Base ‘ 𝑅 )
crngcomd.t · = ( .r𝑅 )
crngcomd.r ( 𝜑𝑅 ∈ CRing )
crngcomd.1 ( 𝜑𝑋𝐵 )
crngcomd.2 ( 𝜑𝑌𝐵 )
Assertion crngcomd ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 crngcomd.b 𝐵 = ( Base ‘ 𝑅 )
2 crngcomd.t · = ( .r𝑅 )
3 crngcomd.r ( 𝜑𝑅 ∈ CRing )
4 crngcomd.1 ( 𝜑𝑋𝐵 )
5 crngcomd.2 ( 𝜑𝑌𝐵 )
6 1 2 crngcom ( ( 𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) )
7 3 4 5 6 syl3anc ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) )