Metamath Proof Explorer


Theorem crngmgp

Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypothesis ringmgp.g 𝐺 = ( mulGrp ‘ 𝑅 )
Assertion crngmgp ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd )

Proof

Step Hyp Ref Expression
1 ringmgp.g 𝐺 = ( mulGrp ‘ 𝑅 )
2 1 iscrng ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd ) )
3 2 simprbi ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd )