| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							crngocom.1 | 
							⊢ 𝐺  =  ( 1st  ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							crngocom.2 | 
							⊢ 𝐻  =  ( 2nd  ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							crngocom.3 | 
							⊢ 𝑋  =  ran  𝐺  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							iscrngo2 | 
							⊢ ( 𝑅  ∈  CRingOps  ↔  ( 𝑅  ∈  RingOps  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐻 𝑦 )  =  ( 𝑦 𝐻 𝑥 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							simprbi | 
							⊢ ( 𝑅  ∈  CRingOps  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐻 𝑦 )  =  ( 𝑦 𝐻 𝑥 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝐴 𝐻 𝑦 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑦 𝐻 𝑥 )  =  ( 𝑦 𝐻 𝐴 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝐻 𝑦 )  =  ( 𝑦 𝐻 𝑥 )  ↔  ( 𝐴 𝐻 𝑦 )  =  ( 𝑦 𝐻 𝐴 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐻 𝑦 )  =  ( 𝐴 𝐻 𝐵 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝑦 𝐻 𝐴 )  =  ( 𝐵 𝐻 𝐴 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqeq12d | 
							⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴 𝐻 𝑦 )  =  ( 𝑦 𝐻 𝐴 )  ↔  ( 𝐴 𝐻 𝐵 )  =  ( 𝐵 𝐻 𝐴 ) ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							rspc2v | 
							⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐻 𝑦 )  =  ( 𝑦 𝐻 𝑥 )  →  ( 𝐴 𝐻 𝐵 )  =  ( 𝐵 𝐻 𝐴 ) ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							mpan9 | 
							⊢ ( ( 𝑅  ∈  CRingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝐻 𝐵 )  =  ( 𝐵 𝐻 𝐴 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3impb | 
							⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐻 𝐵 )  =  ( 𝐵 𝐻 𝐴 ) )  |