| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringpropd.1 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 2 |  | ringpropd.2 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 3 |  | ringpropd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 4 |  | ringpropd.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 5 | 1 2 3 4 | ringpropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  Ring  ↔  𝐿  ∈  Ring ) ) | 
						
							| 6 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 8 | 6 7 | mgpbas | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 9 | 1 8 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( mulGrp ‘ 𝐿 )  =  ( mulGrp ‘ 𝐿 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 12 | 10 11 | mgpbas | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ ( mulGrp ‘ 𝐿 ) ) | 
						
							| 13 | 2 12 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( mulGrp ‘ 𝐿 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐾 ) | 
						
							| 15 | 6 14 | mgpplusg | ⊢ ( .r ‘ 𝐾 )  =  ( +g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 16 | 15 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) | 
						
							| 17 |  | eqid | ⊢ ( .r ‘ 𝐿 )  =  ( .r ‘ 𝐿 ) | 
						
							| 18 | 10 17 | mgpplusg | ⊢ ( .r ‘ 𝐿 )  =  ( +g ‘ ( mulGrp ‘ 𝐿 ) ) | 
						
							| 19 | 18 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) | 
						
							| 20 | 4 16 19 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) ) | 
						
							| 21 | 9 13 20 | cmnpropd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  ∈  CMnd  ↔  ( mulGrp ‘ 𝐿 )  ∈  CMnd ) ) | 
						
							| 22 | 5 21 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐾  ∈  Ring  ∧  ( mulGrp ‘ 𝐾 )  ∈  CMnd )  ↔  ( 𝐿  ∈  Ring  ∧  ( mulGrp ‘ 𝐿 )  ∈  CMnd ) ) ) | 
						
							| 23 | 6 | iscrng | ⊢ ( 𝐾  ∈  CRing  ↔  ( 𝐾  ∈  Ring  ∧  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) ) | 
						
							| 24 | 10 | iscrng | ⊢ ( 𝐿  ∈  CRing  ↔  ( 𝐿  ∈  Ring  ∧  ( mulGrp ‘ 𝐿 )  ∈  CMnd ) ) | 
						
							| 25 | 22 23 24 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝐾  ∈  CRing  ↔  𝐿  ∈  CRing ) ) |