Metamath Proof Explorer


Theorem crngring

Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
2 1 iscrng ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) )
3 2 simplbi ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )