Step |
Hyp |
Ref |
Expression |
1 |
|
crngunit.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
crngunit.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
crngunit.3 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
8 |
4 5 6 7
|
crngoppr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) |
9 |
8
|
3expa |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) |
10 |
9
|
eqcomd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
11 |
10
|
an32s |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
12 |
11
|
eqeq1d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ↔ ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = 1 ) ) |
13 |
12
|
rexbidva |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = 1 ) ) |
14 |
13
|
pm5.32da |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = 1 ) ) ) |
15 |
6 4
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
17 |
15 16 7
|
dvdsr |
⊢ ( 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ↔ ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ) ) |
18 |
4 3 5
|
dvdsr |
⊢ ( 𝑋 ∥ 1 ↔ ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = 1 ) ) |
19 |
14 17 18
|
3bitr4g |
⊢ ( 𝑅 ∈ CRing → ( 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ↔ 𝑋 ∥ 1 ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑋 ∥ 1 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ↔ ( 𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ) ) ) |
21 |
1 2 3 6 16
|
isunit |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ) |
22 |
|
pm4.24 |
⊢ ( 𝑋 ∥ 1 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ) ) |
23 |
20 21 22
|
3bitr4g |
⊢ ( 𝑅 ∈ CRing → ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 ) ) |