| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 2 |
|
ax-icn |
⊢ i ∈ ℂ |
| 3 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 4 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) |
| 5 |
2 3 4
|
sylancr |
⊢ ( 𝐵 ∈ ℝ → ( i · 𝐵 ) ∈ ℂ ) |
| 6 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 7 |
1 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 8 |
|
reval |
⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) |
| 10 |
|
cjcl |
⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℂ ) |
| 11 |
7 10
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℂ ) |
| 12 |
7 11
|
addcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ∈ ℂ ) |
| 13 |
12
|
halfcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ∈ ℂ ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 15 |
|
recl |
⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℝ ) |
| 16 |
7 15
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℝ ) |
| 17 |
9 16
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ∈ ℝ ) |
| 18 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 19 |
17 18
|
resubcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) ∈ ℝ ) |
| 20 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → i ∈ ℂ ) |
| 21 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 22 |
2 21 4
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( i · 𝐵 ) ∈ ℂ ) |
| 23 |
7 11
|
subcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ∈ ℂ ) |
| 24 |
23
|
halfcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ∈ ℂ ) |
| 25 |
20 22 24
|
subdid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( i · ( ( i · 𝐵 ) − ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) ) = ( ( i · ( i · 𝐵 ) ) − ( i · ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) ) ) |
| 26 |
14 22 14
|
pnpcand |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐴 + 𝐴 ) ) = ( ( i · 𝐵 ) − 𝐴 ) ) |
| 27 |
22 14 22
|
pnpcan2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( i · 𝐵 ) + ( i · 𝐵 ) ) − ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( i · 𝐵 ) − 𝐴 ) ) |
| 28 |
26 27
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐴 + 𝐴 ) ) = ( ( ( i · 𝐵 ) + ( i · 𝐵 ) ) − ( 𝐴 + ( i · 𝐵 ) ) ) ) |
| 29 |
28
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐴 + 𝐴 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) = ( ( ( ( i · 𝐵 ) + ( i · 𝐵 ) ) − ( 𝐴 + ( i · 𝐵 ) ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) |
| 30 |
14 14
|
addcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐴 ) ∈ ℂ ) |
| 31 |
7 11 30
|
addsubd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) − ( 𝐴 + 𝐴 ) ) = ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐴 + 𝐴 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) |
| 32 |
22 22
|
addcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( i · 𝐵 ) + ( i · 𝐵 ) ) ∈ ℂ ) |
| 33 |
32 7 11
|
subsubd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( i · 𝐵 ) + ( i · 𝐵 ) ) − ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) = ( ( ( ( i · 𝐵 ) + ( i · 𝐵 ) ) − ( 𝐴 + ( i · 𝐵 ) ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) |
| 34 |
29 31 33
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) − ( 𝐴 + 𝐴 ) ) = ( ( ( i · 𝐵 ) + ( i · 𝐵 ) ) − ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) ) |
| 35 |
14
|
2timesd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) − ( 2 · 𝐴 ) ) = ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) − ( 𝐴 + 𝐴 ) ) ) |
| 37 |
22
|
2timesd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 · ( i · 𝐵 ) ) = ( ( i · 𝐵 ) + ( i · 𝐵 ) ) ) |
| 38 |
37
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 2 · ( i · 𝐵 ) ) − ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) = ( ( ( i · 𝐵 ) + ( i · 𝐵 ) ) − ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) ) |
| 39 |
34 36 38
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) − ( 2 · 𝐴 ) ) = ( ( 2 · ( i · 𝐵 ) ) − ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) ) |
| 40 |
39
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) − ( 2 · 𝐴 ) ) / 2 ) = ( ( ( 2 · ( i · 𝐵 ) ) − ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) / 2 ) ) |
| 41 |
|
2cn |
⊢ 2 ∈ ℂ |
| 42 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 2 · 𝐴 ) ∈ ℂ ) |
| 43 |
41 14 42
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 · 𝐴 ) ∈ ℂ ) |
| 44 |
41
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 2 ∈ ℂ ) |
| 45 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 46 |
45
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 2 ≠ 0 ) |
| 47 |
12 43 44 46
|
divsubdird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) − ( 2 · 𝐴 ) ) / 2 ) = ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − ( ( 2 · 𝐴 ) / 2 ) ) ) |
| 48 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( 2 · ( i · 𝐵 ) ) ∈ ℂ ) |
| 49 |
41 22 48
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 · ( i · 𝐵 ) ) ∈ ℂ ) |
| 50 |
49 23 44 46
|
divsubdird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 2 · ( i · 𝐵 ) ) − ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) / 2 ) = ( ( ( 2 · ( i · 𝐵 ) ) / 2 ) − ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) ) |
| 51 |
40 47 50
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − ( ( 2 · 𝐴 ) / 2 ) ) = ( ( ( 2 · ( i · 𝐵 ) ) / 2 ) − ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) ) |
| 52 |
14 44 46
|
divcan3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 ) |
| 53 |
52
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − ( ( 2 · 𝐴 ) / 2 ) ) = ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) ) |
| 54 |
22 44 46
|
divcan3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 2 · ( i · 𝐵 ) ) / 2 ) = ( i · 𝐵 ) ) |
| 55 |
54
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 2 · ( i · 𝐵 ) ) / 2 ) − ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) = ( ( i · 𝐵 ) − ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) ) |
| 56 |
51 53 55
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) = ( ( i · 𝐵 ) − ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( i · ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) ) = ( i · ( ( i · 𝐵 ) − ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) ) ) |
| 58 |
20 20 21
|
mulassd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( i · i ) · 𝐵 ) = ( i · ( i · 𝐵 ) ) ) |
| 59 |
20 23 44 46
|
divassd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( i · ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) / 2 ) = ( i · ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) ) |
| 60 |
58 59
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( i · i ) · 𝐵 ) − ( ( i · ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) / 2 ) ) = ( ( i · ( i · 𝐵 ) ) − ( i · ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) ) ) ) |
| 61 |
25 57 60
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( i · ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) ) = ( ( ( i · i ) · 𝐵 ) − ( ( i · ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) / 2 ) ) ) |
| 62 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 63 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 64 |
62 63
|
eqeltri |
⊢ ( i · i ) ∈ ℝ |
| 65 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 66 |
|
remulcl |
⊢ ( ( ( i · i ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( i · i ) · 𝐵 ) ∈ ℝ ) |
| 67 |
64 65 66
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( i · i ) · 𝐵 ) ∈ ℝ ) |
| 68 |
|
cjth |
⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ∈ ℝ ∧ ( i · ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) ∈ ℝ ) ) |
| 69 |
68
|
simprd |
⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( i · ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) ∈ ℝ ) |
| 70 |
7 69
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( i · ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) ∈ ℝ ) |
| 71 |
70
|
rehalfcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( i · ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) / 2 ) ∈ ℝ ) |
| 72 |
67 71
|
resubcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( i · i ) · 𝐵 ) − ( ( i · ( ( 𝐴 + ( i · 𝐵 ) ) − ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) ) / 2 ) ) ∈ ℝ ) |
| 73 |
61 72
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( i · ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) ) ∈ ℝ ) |
| 74 |
|
rimul |
⊢ ( ( ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) ∈ ℝ ∧ ( i · ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) ) ∈ ℝ ) → ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) = 0 ) |
| 75 |
19 73 74
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) − 𝐴 ) = 0 ) |
| 76 |
13 14 75
|
subeq0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) + ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) / 2 ) = 𝐴 ) |
| 77 |
9 76
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐴 ) |