Metamath Proof Explorer


Theorem csb0

Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018) Avoid ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion csb0 𝐴 / 𝑥 ∅ = ∅

Proof

Step Hyp Ref Expression
1 nfcv 𝑥
2 df-csb 𝐴 / 𝑥 ∅ = { 𝑦[ 𝐴 / 𝑥 ] 𝑦 ∈ ∅ }
3 dfsbcq2 ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ∅ ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ ∅ ) )
4 3 bibi1d ( 𝑧 = 𝐴 → ( ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅ ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅ ) ) )
5 4 imbi2d ( 𝑧 = 𝐴 → ( ( Ⅎ 𝑥 𝑦 ∈ ∅ → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅ ) ) ↔ ( Ⅎ 𝑥 𝑦 ∈ ∅ → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅ ) ) ) )
6 sbv ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅ )
7 6 a1i ( Ⅎ 𝑥 𝑦 ∈ ∅ → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅ ) )
8 5 7 vtoclg ( 𝐴 ∈ V → ( Ⅎ 𝑥 𝑦 ∈ ∅ → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅ ) ) )
9 nfcr ( 𝑥 ∅ → Ⅎ 𝑥 𝑦 ∈ ∅ )
10 8 9 impel ( ( 𝐴 ∈ V ∧ 𝑥 ∅ ) → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ ∅ ↔ 𝑦 ∈ ∅ ) )
11 10 abbi1dv ( ( 𝐴 ∈ V ∧ 𝑥 ∅ ) → { 𝑦[ 𝐴 / 𝑥 ] 𝑦 ∈ ∅ } = ∅ )
12 2 11 syl5eq ( ( 𝐴 ∈ V ∧ 𝑥 ∅ ) → 𝐴 / 𝑥 ∅ = ∅ )
13 1 12 mpan2 ( 𝐴 ∈ V → 𝐴 / 𝑥 ∅ = ∅ )
14 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 ∅ = ∅ )
15 13 14 pm2.61i 𝐴 / 𝑥 ∅ = ∅