| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-clab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ↔ [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| 2 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| 3 |
1 2
|
bitri |
⊢ ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ↔ [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| 4 |
|
sbccom |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
| 5 |
|
df-clab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 ) |
| 6 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) |
| 7 |
5 6
|
bitri |
⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 ) |
| 8 |
7
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
| 9 |
4 8
|
bitr4i |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ { 𝑦 ∣ 𝜑 } ) |
| 10 |
|
sbcel2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) |
| 11 |
3 9 10
|
3bitrri |
⊢ ( 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ↔ 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ) |
| 12 |
11
|
eqriv |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } |