| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-csb |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 } |
| 2 |
1
|
eqabri |
⊢ ( 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
| 3 |
2
|
sbcbii |
⊢ ( [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
| 4 |
|
sbcco |
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
| 5 |
3 4
|
bitri |
⊢ ( [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
| 6 |
5
|
abbii |
⊢ { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 } = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 } |
| 7 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 } |
| 8 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 } |
| 9 |
6 7 8
|
3eqtr4i |
⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |