Step |
Hyp |
Ref |
Expression |
1 |
|
df-csb |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 } |
2 |
1
|
abeq2i |
⊢ ( 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
3 |
2
|
sbcbii |
⊢ ( [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
4 |
|
sbcco |
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
5 |
3 4
|
bitri |
⊢ ( [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
6 |
5
|
abbii |
⊢ { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 } = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 } |
7 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 } |
8 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 } |
9 |
6 7 8
|
3eqtr4i |
⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |