| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbeq1 | ⊢ ( 𝑦  =  𝐴  →  ⦋ 𝑦  /  𝑥 ⦌ ( 𝐵  ∘  𝐶 )  =  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  ∘  𝐶 ) ) | 
						
							| 2 |  | csbeq1 | ⊢ ( 𝑦  =  𝐴  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 3 |  | csbeq1 | ⊢ ( 𝑦  =  𝐴  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 4 | 2 3 | coeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∘  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∘  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 5 | 1 4 | eqeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ⦋ 𝑦  /  𝑥 ⦌ ( 𝐵  ∘  𝐶 )  =  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∘  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  ↔  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  ∘  𝐶 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∘  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 6 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 7 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 8 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐶 | 
						
							| 9 | 7 8 | nfco | ⊢ Ⅎ 𝑥 ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∘  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 10 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 11 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 12 | 10 11 | coeq12d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  ∘  𝐶 )  =  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∘  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 13 | 6 9 12 | csbief | ⊢ ⦋ 𝑦  /  𝑥 ⦌ ( 𝐵  ∘  𝐶 )  =  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∘  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 14 | 5 13 | vtoclg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  ∘  𝐶 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∘  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) |