Metamath Proof Explorer


Theorem csbcom

Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion csbcom 𝐴 / 𝑥 𝐵 / 𝑦 𝐶 = 𝐵 / 𝑦 𝐴 / 𝑥 𝐶

Proof

Step Hyp Ref Expression
1 sbccom ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧𝐶[ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝑧𝐶 )
2 sbcel2 ( [ 𝐵 / 𝑦 ] 𝑧𝐶𝑧 𝐵 / 𝑦 𝐶 )
3 2 sbcbii ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧𝐶[ 𝐴 / 𝑥 ] 𝑧 𝐵 / 𝑦 𝐶 )
4 sbcel2 ( [ 𝐴 / 𝑥 ] 𝑧𝐶𝑧 𝐴 / 𝑥 𝐶 )
5 4 sbcbii ( [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝑧𝐶[ 𝐵 / 𝑦 ] 𝑧 𝐴 / 𝑥 𝐶 )
6 1 3 5 3bitr3i ( [ 𝐴 / 𝑥 ] 𝑧 𝐵 / 𝑦 𝐶[ 𝐵 / 𝑦 ] 𝑧 𝐴 / 𝑥 𝐶 )
7 sbcel2 ( [ 𝐴 / 𝑥 ] 𝑧 𝐵 / 𝑦 𝐶𝑧 𝐴 / 𝑥 𝐵 / 𝑦 𝐶 )
8 sbcel2 ( [ 𝐵 / 𝑦 ] 𝑧 𝐴 / 𝑥 𝐶𝑧 𝐵 / 𝑦 𝐴 / 𝑥 𝐶 )
9 6 7 8 3bitr3i ( 𝑧 𝐴 / 𝑥 𝐵 / 𝑦 𝐶𝑧 𝐵 / 𝑦 𝐴 / 𝑥 𝐶 )
10 9 eqriv 𝐴 / 𝑥 𝐵 / 𝑦 𝐶 = 𝐵 / 𝑦 𝐴 / 𝑥 𝐶