Metamath Proof Explorer


Theorem csbconstg

Description: Substitution doesn't affect a constant B (in which x does not occur). csbconstgf with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012) Avoid ax-12 . (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Assertion csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝐵 = 𝐵 )

Proof

Step Hyp Ref Expression
1 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
2 1 eqeq1d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 𝐵 = 𝐵 𝐴 / 𝑥 𝐵 = 𝐵 ) )
3 df-csb 𝑦 / 𝑥 𝐵 = { 𝑧[ 𝑦 / 𝑥 ] 𝑧𝐵 }
4 sbcg ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] 𝑧𝐵𝑧𝐵 ) )
5 4 elv ( [ 𝑦 / 𝑥 ] 𝑧𝐵𝑧𝐵 )
6 5 abbii { 𝑧[ 𝑦 / 𝑥 ] 𝑧𝐵 } = { 𝑧𝑧𝐵 }
7 abid2 { 𝑧𝑧𝐵 } = 𝐵
8 3 6 7 3eqtri 𝑦 / 𝑥 𝐵 = 𝐵
9 2 8 vtoclg ( 𝐴𝑉 𝐴 / 𝑥 𝐵 = 𝐵 )