Metamath Proof Explorer


Theorem csbcow

Description: Composition law for chained substitutions into a class. Version of csbco with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Nov-2005) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Assertion csbcow 𝐴 / 𝑦 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵

Proof

Step Hyp Ref Expression
1 df-csb 𝑦 / 𝑥 𝐵 = { 𝑧[ 𝑦 / 𝑥 ] 𝑧𝐵 }
2 1 abeq2i ( 𝑧 𝑦 / 𝑥 𝐵[ 𝑦 / 𝑥 ] 𝑧𝐵 )
3 2 sbcbii ( [ 𝐴 / 𝑦 ] 𝑧 𝑦 / 𝑥 𝐵[ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝑧𝐵 )
4 sbccow ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝑧𝐵[ 𝐴 / 𝑥 ] 𝑧𝐵 )
5 3 4 bitri ( [ 𝐴 / 𝑦 ] 𝑧 𝑦 / 𝑥 𝐵[ 𝐴 / 𝑥 ] 𝑧𝐵 )
6 5 abbii { 𝑧[ 𝐴 / 𝑦 ] 𝑧 𝑦 / 𝑥 𝐵 } = { 𝑧[ 𝐴 / 𝑥 ] 𝑧𝐵 }
7 df-csb 𝐴 / 𝑦 𝑦 / 𝑥 𝐵 = { 𝑧[ 𝐴 / 𝑦 ] 𝑧 𝑦 / 𝑥 𝐵 }
8 df-csb 𝐴 / 𝑥 𝐵 = { 𝑧[ 𝐴 / 𝑥 ] 𝑧𝐵 }
9 6 7 8 3eqtr4i 𝐴 / 𝑦 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵