Metamath Proof Explorer


Theorem csbdm

Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017) (Revised by NM, 24-Aug-2018)

Ref Expression
Assertion csbdm 𝐴 / 𝑥 dom 𝐵 = dom 𝐴 / 𝑥 𝐵

Proof

Step Hyp Ref Expression
1 csbab 𝐴 / 𝑥 { 𝑦 ∣ ∃ 𝑤𝑦 , 𝑤 ⟩ ∈ 𝐵 } = { 𝑦[ 𝐴 / 𝑥 ]𝑤𝑦 , 𝑤 ⟩ ∈ 𝐵 }
2 sbcex2 ( [ 𝐴 / 𝑥 ]𝑤𝑦 , 𝑤 ⟩ ∈ 𝐵 ↔ ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 , 𝑤 ⟩ ∈ 𝐵 )
3 sbcel2 ( [ 𝐴 / 𝑥 ]𝑦 , 𝑤 ⟩ ∈ 𝐵 ↔ ⟨ 𝑦 , 𝑤 ⟩ ∈ 𝐴 / 𝑥 𝐵 )
4 3 exbii ( ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 , 𝑤 ⟩ ∈ 𝐵 ↔ ∃ 𝑤𝑦 , 𝑤 ⟩ ∈ 𝐴 / 𝑥 𝐵 )
5 2 4 bitri ( [ 𝐴 / 𝑥 ]𝑤𝑦 , 𝑤 ⟩ ∈ 𝐵 ↔ ∃ 𝑤𝑦 , 𝑤 ⟩ ∈ 𝐴 / 𝑥 𝐵 )
6 5 abbii { 𝑦[ 𝐴 / 𝑥 ]𝑤𝑦 , 𝑤 ⟩ ∈ 𝐵 } = { 𝑦 ∣ ∃ 𝑤𝑦 , 𝑤 ⟩ ∈ 𝐴 / 𝑥 𝐵 }
7 1 6 eqtri 𝐴 / 𝑥 { 𝑦 ∣ ∃ 𝑤𝑦 , 𝑤 ⟩ ∈ 𝐵 } = { 𝑦 ∣ ∃ 𝑤𝑦 , 𝑤 ⟩ ∈ 𝐴 / 𝑥 𝐵 }
8 dfdm3 dom 𝐵 = { 𝑦 ∣ ∃ 𝑤𝑦 , 𝑤 ⟩ ∈ 𝐵 }
9 8 csbeq2i 𝐴 / 𝑥 dom 𝐵 = 𝐴 / 𝑥 { 𝑦 ∣ ∃ 𝑤𝑦 , 𝑤 ⟩ ∈ 𝐵 }
10 dfdm3 dom 𝐴 / 𝑥 𝐵 = { 𝑦 ∣ ∃ 𝑤𝑦 , 𝑤 ⟩ ∈ 𝐴 / 𝑥 𝐵 }
11 7 9 10 3eqtr4i 𝐴 / 𝑥 dom 𝐵 = dom 𝐴 / 𝑥 𝐵