Description: Analogue of dfsbcq for proper substitution into a class. (Contributed by NM, 10-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | csbeq1 | ⊢ ( 𝐴 = 𝐵 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑥 ⦌ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq | ⊢ ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ [ 𝐵 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) | |
2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } = { 𝑦 ∣ [ 𝐵 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
3 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } | |
4 | df-csb | ⊢ ⦋ 𝐵 / 𝑥 ⦌ 𝐶 = { 𝑦 ∣ [ 𝐵 / 𝑥 ] 𝑦 ∈ 𝐶 } | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑥 ⦌ 𝐶 ) |