Metamath Proof Explorer


Theorem csbeq1

Description: Analogue of dfsbcq for proper substitution into a class. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbeq1 ( 𝐴 = 𝐵 𝐴 / 𝑥 𝐶 = 𝐵 / 𝑥 𝐶 )

Proof

Step Hyp Ref Expression
1 dfsbcq ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑦𝐶[ 𝐵 / 𝑥 ] 𝑦𝐶 ) )
2 1 abbidv ( 𝐴 = 𝐵 → { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐶 } = { 𝑦[ 𝐵 / 𝑥 ] 𝑦𝐶 } )
3 df-csb 𝐴 / 𝑥 𝐶 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐶 }
4 df-csb 𝐵 / 𝑥 𝐶 = { 𝑦[ 𝐵 / 𝑥 ] 𝑦𝐶 }
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 𝐴 / 𝑥 𝐶 = 𝐵 / 𝑥 𝐶 )