Metamath Proof Explorer


Theorem csbeq12dv

Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023)

Ref Expression
Hypotheses csbeq12dv.1 ( 𝜑𝐴 = 𝐶 )
csbeq12dv.2 ( 𝜑𝐵 = 𝐷 )
Assertion csbeq12dv ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐶 / 𝑥 𝐷 )

Proof

Step Hyp Ref Expression
1 csbeq12dv.1 ( 𝜑𝐴 = 𝐶 )
2 csbeq12dv.2 ( 𝜑𝐵 = 𝐷 )
3 1 csbeq1d ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐶 / 𝑥 𝐵 )
4 2 csbeq2dv ( 𝜑 𝐶 / 𝑥 𝐵 = 𝐶 / 𝑥 𝐷 )
5 3 4 eqtrd ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐶 / 𝑥 𝐷 )