Description: Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | csbeq1a | ⊢ ( 𝑥 = 𝐴 → 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbid | ⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐵 = 𝐵 | |
2 | csbeq1 | ⊢ ( 𝑥 = 𝐴 → ⦋ 𝑥 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
3 | 1 2 | eqtr3id | ⊢ ( 𝑥 = 𝐴 → 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |