Description: Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbeq1a | ⊢ ( 𝑥 = 𝐴 → 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbid | ⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐵 = 𝐵 | |
| 2 | csbeq1 | ⊢ ( 𝑥 = 𝐴 → ⦋ 𝑥 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
| 3 | 1 2 | eqtr3id | ⊢ ( 𝑥 = 𝐴 → 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |