Metamath Proof Explorer


Theorem csbeq2

Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018)

Ref Expression
Assertion csbeq2 ( ∀ 𝑥 𝐵 = 𝐶 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐵 = 𝐶 → ( 𝑦𝐵𝑦𝐶 ) )
2 1 alimi ( ∀ 𝑥 𝐵 = 𝐶 → ∀ 𝑥 ( 𝑦𝐵𝑦𝐶 ) )
3 sbcbi2 ( ∀ 𝑥 ( 𝑦𝐵𝑦𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝑦𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) )
4 2 3 syl ( ∀ 𝑥 𝐵 = 𝐶 → ( [ 𝐴 / 𝑥 ] 𝑦𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) )
5 4 abbidv ( ∀ 𝑥 𝐵 = 𝐶 → { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 } = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐶 } )
6 df-csb 𝐴 / 𝑥 𝐵 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 }
7 df-csb 𝐴 / 𝑥 𝐶 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐶 }
8 5 6 7 3eqtr4g ( ∀ 𝑥 𝐵 = 𝐶 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 )