Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbeq2 | ⊢ ( ∀ 𝑥 𝐵 = 𝐶 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 𝐵 = 𝐶 → ∀ 𝑥 ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) |
| 3 | sbcbi2 | ⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 𝐵 = 𝐶 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) |
| 5 | 4 | abbidv | ⊢ ( ∀ 𝑥 𝐵 = 𝐶 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
| 6 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } | |
| 7 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( ∀ 𝑥 𝐵 = 𝐶 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |