Metamath Proof Explorer


Theorem csbeq2d

Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses csbeq2d.1 𝑥 𝜑
csbeq2d.2 ( 𝜑𝐵 = 𝐶 )
Assertion csbeq2d ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 )

Proof

Step Hyp Ref Expression
1 csbeq2d.1 𝑥 𝜑
2 csbeq2d.2 ( 𝜑𝐵 = 𝐶 )
3 2 eleq2d ( 𝜑 → ( 𝑦𝐵𝑦𝐶 ) )
4 1 3 sbcbid ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝑦𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) )
5 4 abbidv ( 𝜑 → { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 } = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐶 } )
6 df-csb 𝐴 / 𝑥 𝐵 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 }
7 df-csb 𝐴 / 𝑥 𝐶 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐶 }
8 5 6 7 3eqtr4g ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 )