Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005) (Revised by Mario Carneiro, 1-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbeq2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
csbeq2d.2 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | ||
Assertion | csbeq2d | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | csbeq2d.2 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
3 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) |
4 | 1 3 | sbcbid | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) |
5 | 4 | abbidv | ⊢ ( 𝜑 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
6 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } | |
7 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } | |
8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |