Metamath Proof Explorer
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005) (Revised by Mario Carneiro, 1-Sep-2015)
|
|
Ref |
Expression |
|
Hypothesis |
csbeq2i.1 |
⊢ 𝐵 = 𝐶 |
|
Assertion |
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
csbeq2i.1 |
⊢ 𝐵 = 𝐶 |
2 |
1
|
a1i |
⊢ ( ⊤ → 𝐵 = 𝐶 ) |
3 |
2
|
csbeq2dv |
⊢ ( ⊤ → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
4 |
3
|
mptru |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |