| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-csb | ⊢ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 } | 
						
							| 2 |  | abid2 | ⊢ { 𝑦  ∣  𝑦  ∈  𝐵 }  =  𝐵 | 
						
							| 3 |  | elex | ⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  V ) | 
						
							| 4 | 2 3 | eqeltrid | ⊢ ( 𝐵  ∈  𝑊  →  { 𝑦  ∣  𝑦  ∈  𝐵 }  ∈  V ) | 
						
							| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 𝐵  ∈  𝑊  →  ∀ 𝑥 { 𝑦  ∣  𝑦  ∈  𝐵 }  ∈  V ) | 
						
							| 6 |  | spsbc | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥 { 𝑦  ∣  𝑦  ∈  𝐵 }  ∈  V  →  [ 𝐴  /  𝑥 ] { 𝑦  ∣  𝑦  ∈  𝐵 }  ∈  V ) ) | 
						
							| 7 | 5 6 | syl5 | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥 𝐵  ∈  𝑊  →  [ 𝐴  /  𝑥 ] { 𝑦  ∣  𝑦  ∈  𝐵 }  ∈  V ) ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 V | 
						
							| 9 | 8 | sbcabel | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] { 𝑦  ∣  𝑦  ∈  𝐵 }  ∈  V  ↔  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 }  ∈  V ) ) | 
						
							| 10 | 7 9 | sylibd | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥 𝐵  ∈  𝑊  →  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 }  ∈  V ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑥 𝐵  ∈  𝑊 )  →  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 }  ∈  V ) | 
						
							| 12 | 1 11 | eqeltrid | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑥 𝐵  ∈  𝑊 )  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∈  V ) | 
						
							| 13 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  ∅ ) | 
						
							| 14 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 15 | 13 14 | eqeltrdi | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∈  V ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ¬  𝐴  ∈  V  ∧  ∀ 𝑥 𝐵  ∈  𝑊 )  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∈  V ) | 
						
							| 17 | 12 16 | pm2.61ian | ⊢ ( ∀ 𝑥 𝐵  ∈  𝑊  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∈  V ) |